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Abstract

A generally understood fact of classical learning theory is the tradeoff between bias
and variance, often drawn in textbooks as a U-shaped curve with model complexity
on the x-axis and generalization error on the y-axis [Luxburg and Schölkopf].
The theory posits that test error is related to the complexity of the hypothesis
space from which we choose our model in a manner that has a single “sweet-spot"
beyond which increasing model complexity increases test error. However this
theory has been challenged in recent years by the remarkable success of deep
neural network models. Such models are often highly overparameterized, with
parameter counts sometimes ranging in the millions to billions [A. Canziani, 2016].
Since free parameter count is a common measure of model complexity, one would
expect these models to dramatically overfit to the training data and as a result the
model selected from a procedure like ERM will not generalize well to unseen
data. Surprisingly, however, the opposite behavior is often seen in what has been
characterized as a “double descent curve." In this empirically observed regime,
increasing model complexity beyond the point of interpolation (the point at which
there exists models in the hypothesis space capable of achieving near 0 error on
the training data) can lead to the selection of models that are able to generalize
better than those selected from hypothesis spaces with complexity below the
interpolation threshold. This remarkable result has been documented across several
empirical studies and is summarized in detail by Belkin et al. [2019]. One important
result from Belkin et al. [2019]’s analysis is that minimum norm (low complexity)
interpolating solutions tend to be the best performing ones. In this project, we
aim to further extend Belkin et al. [2019]’s work to the regime of deep neural
networks. We develop a novel algorithm for learning low-complexity deep neural
networks and evaluate it against baselines. Our results show that for certain classes
of models our algorithm can produce comparatively better deep neural networks,
and that across a variety of algorithms lower complexity deep neural network lead
to lower complexity intermediate features. These results provide further evidence
that small norm interpolating models have very desirable properties which merit
further exploration.



1 Introduction

1.1 Bias Variance Tradeoff and the Classical Regime

In the classical machine learning regime we seek to increase the complexity of our hypothesis space
to find a model that will have both the capacity required to learn our target function (bias) and have
predictions that are robust to small changes in the training set and generalize well (variance). This
is commonly accomplished by looking for a "sweet spot" when examining models from hypothesis
classes of increasing complexity (such as those with more free parameters)[Belkin et al., 2019].

However recent results such as those characterized in Belkin et al. [2019] have shown that overpa-
rameterizing our model far beyond the capacity required to fully fit a training dataset can lead to even
better generalization than the "balanced" model found in the classical regime. This confounding of
the classical bias variance tradeoff has been the subject of considerable study [Zhang et al., 2016,
Belkin et al., 2018, Yang et al., 2020, Geman et al., 1992]. Previous work has sought to understand
the properties of so-called "interpolating" models–models which are able to completely fit the training
dataset and have far more parameters than are required to do so. Belkin et al. [2019] found that
interpolating models had better generalization error than classical models across a wide variety of
tasks and model types. They detailed both empirical and theoretical results implying that the best
interpolating models are minimal norm–low complexity–ones. Similar results have been published
by Rangamani et al. [2020], who showed that minimal norm interpolating kernel machines have very
desirable properties such as maximum stability. In our work, we aim to extend these results to the
setting of deep neural networks.

1.2 Previous Work on Low Complexity Deep Neural Networks

A variety of previous studies have explored the properties low-complexity deep neural networks
as well as overparameteterized neural networks, a pre-requisite for interpolation. Bansal et al.
[2018] evaluates a method for training deep neural networks by regulating their complexity using
an L2 penalty and lagrange multipliers, similiar to the training of SVMs. E et al. [2021] analyzes
the generalization properties of minimum norm overparameterized networks and is able to derive
bounds on their generalization error in the case of noiseless labels. Zhang et al. [2016] showed that
overparameterized deep neural networks are able to express any function on a finite input sample.
Huh et al. [2021] developed theoretical and empirical analysis showing that over-parameterized deep
neural networks have an implicit bias towards low-rank feature embeddings. Most relevant to our
work, Belkin et al. [2019] demonstrates the double descent phenomenon in a wide variety of contexts
and posits that low-complexity solutions are the best ones in the modern "interpolating" regime. In
our work we seek to extend that of Belkin et al. [2019] by using the complexity measure of effective
rank [Roy and Vetterli, 2007], inspired by its use in Huh et al. [2021]. From here on out, when we
discuss complexity, we refer to the measure of the average effective rank of the weight matrices in a
deep neural network.

1.3 Projection Algorithm

Algorithm 1: Projection Algorithm
Input: Interpolating solution fθ, with parameters θ
Output: θmin, an approximation of the minimum effective rank interpolating solution

1 Initialize θmin = θ
2 while Not should_terminate(θ, θmin) do
3 θmin = θ
4 while L(fθ,Dtrain) = 0 do
5 UΣV = SVD(θ) // SVD decomposition
6 θ = U zero_last_column(Σ)V // reduce rank by one
7 while L(fθ,Dtrain) ̸= 0 do
8 θ = θ − α · ∂L

∂θ // Take gradient step

2



In order to facilitate the training of low-effective rank interpolating neural networks, we introduce
a new algorithm inspired by a constrained optimization method in adversarial robustness called
projected gradient descent (PGD) [Madry et al., 2017]. The idea is to use a traditional optimization
method until the constraints are no longer satisfied. Once this occurs, we can project back into valid
constraint space and continue performing optimization.

In our algorithm, we impose the constraint that the model is an interpolating one, and we seek to
minimize the average effective rank of all of the linear weight matrices in the network. The algorithm
is detailed in Algorithm 1. First, we train a network to the point of interpolation using standard ERM
training methods (e.g. gradient descent). In practice, we have found training slightly beyond this
point produces better results (we treat the number of training steps beyond the point of interpolation
as a hyperparameter). Once we have finished training, we then reduce the effective rank of each layer
of the network by computing the SVD of its weight matrix and zeroing out the smallest singular value.
We continue this rank-reduction process until our model no longer meets a threshold for interpolation
(in practice we find that 85% accuracy works well as a stopping point). We then repeat the process,
alternating training to interpolation and reducing effective rank until termination.

2 Experiments

2.1 Training Method Comparison

We aim to study the relationship between the utilized method of regularizing effective rank and its
effect on training accuracy and effective rank of the neural networks. We evaluate this relationship on
four classes of interpolating (weakened to train accuracy being > 95%) models:

• Vanilla MLP: A standard MLP network with 2000 parameters. We construct 10 different
MLPs with the number of hidden layers ranging from 1 to 10. Hidden layer widths are
adjusted to keep the parameter count as close to 2000 as possible so that our models have a
fixed level of capacity.

• All Layer Regularization: The same architecture as the Vanilla MLP but with a penalty term
added to the loss based on the effective rank of the network. To make regularization strength
comparable across architectures, we average the effective rank of each layer’s weight matrix
divided by the maximum rank of the weight matrix across all layers in the network.

• Last Layer Regularization: Since the last layer collects the features of a neural network and
combines them to produce outputs, we hypothesize that only regularizing the last layer may
still lead to a regularizing effect, as a simple final layer must work with simpler features to
produce its outputs. This class of models is identical to the All Layer Regularization class
but only applies regularization to the final layer.

• Projection All Layers: This class of models uses architectures identical to those of the
Vanilla MLP but is trained using the projection algorithm (Algorithm 1) applied to all weight
matrices

• Projection Last Layer: Using similar reasoning as the Last Layer Regularization models, we
also try only applying our projection algorithm to the last layer of our architecture.

Models are trained across 3 random seeds for 5000 steps and the reported results are averaged. For
all experiments, we use the MNIST-1D dataset [Greydanus, 2020], a simpler version of MNIST that
maintains the real world complexity of the dataset with a significantly smaller feature dimension,
allowing for the evaluation of smaller models.

2.2 Feature Complexity Analysis

In [Huh et al., 2021], it was found that deep neural networks have an inductive bias towards low rank
feature embeddings. We hypothesize that low-complexity interpolating networks may have the same
bias as having simpler weights should portend having simpler features since the model cannot easily
learn high variance weights which overfit to small details of the data. To test this hypothesis, we
evaluate the feature complexity for the same four classes of interpolating models.

To measure feature complexity we leverage the approach used in [Huh et al., 2021]: the feature
complexity of a model is the effective rank of the kernel matrix of the features the model produces on
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Figure 1: (Left) A comparison of generalization accuracy for five different classes of models with
varying depth. (Right) A comparison of Effective Rank for five different classes of models with
varying depth.

input data. We use the features produced right before the final layer (after the ReLu activation). For
computational reasons, we evaluate feature complexity on a random subsample of 100 datapoints in
our training set. We find that relationships shown using larger sample sizes are maintained with this
sample size.

3 Results and Analysis

3.1 Effective Rank and Test Accuracy

In Figure 1, we show a comparison of test accuracy and effective rank for all five classes of models we
consider. In the left plot, we see that for a small number of hidden layers (2 to 3), our projection based
methods are able to on average outperform all other methods including the unregularized vanilla MLP.
As depth increases, however, the generalization error decreases and our average performance becomes
close to identical to that of the unregularized vanilla MLP. Notably, however, we still generalize better
than the baseline explicitly regularized models. This shows the potential of our projection algorithm
for training high performing low effective rank models.

On the right, we see a comparison of the average effective rank of each class of models as we increase
depth. While the effective rank of our algorithm is consistently lower than that of the vanilla MLP on
average, explicit regularization seems far more effective and reducing effective rank.

3.2 Feature Complexity

We show results for our feature complexity experiment in Figure 2. On the left, we show how the
feature complexity changes as we increase the number of layers in our model (keeping the number of
parameters fixed) for all five classes of models we tested. As expected based on the results of [Huh
et al., 2021], we see that increasing the depth of the network dramatically reduces the complexity of
features our network learns. Surprisingly, our projection method seems to learn the most complex
features across all model architectures we consider outside of the deepest (9 and 10 layer networks).
We hypothesize that this may be a result of the projection method, which seeks to reduce rank by
removing the smallest singular value components of a matrix first. Since we are removing the smallest
components first, these components will have the least impact on the overall complexity of the features
output by the model. Therefore the projection method is able to maintain the structural complexity
of features that a deep neural network needs to learn relationships in the data while filtering out the
spurious complexity which comes as a result of noise. A complicating and suprising observation we
made during training is that effective rank of features tended to increase as the effective rank of our
network decreased when we trained using our projection method. This result was not unique to our
projection method, but was particularly pronounced in models that were trained with it, especially
lower depth models. This could serve as an interesting point of exploration in future work.
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Figure 2: (Left) A comparison of feature complexity for five different classes of models with varying
depth. Experiments are run across 3 seeds and error bars show 95% confidence intervals. (Right)
A scatterplot of effective rank and feature complexity for all five classes of models in our Feature
Complexity experiment across seed and number of layers.

On the right of Figure 2, we show a scatterplot of effective rank versus feature complexity for all
models and seeds that we trained. The trend is clear across almost all sets of models that we train:
lower effective rank leads to much lower feature complexity. The only exception to this rule are
the 1-layer and some 2-layer Neural Networks, which we hypothesize do not have enough depth to
simplify the high dimensional input data sufficiently before the final layer of the network.

4 Conclusion and Future Work

As detailed in [Belkin et al., 2019], interpolating machine learning models seem to have many
surprising and desirable properties, and this paper presents one more step towards understanding
these properties. We have developed a new algorithm to find minimum effective rank interpolating
deep neural networks and shown that for certain model architectures it is able to outperform strong
baselines. We further analyze the relationship between effective rank of a network’s weights and the
complexity of its features and find that small effective rank weights produce less complex features.
These results extend those of Huh et al. [2021]. We think that future work extending our analysis to
larger models and dataset will provide a better understanding of the properties of low-complexity
interpolating deep networks.
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