Inertial Navigation System Drift Reduction Using
Scientific Machine Learning

by
Matthew McManus
B.S. Computer Science and Engineering, Massachusetts Institute of Technology, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 2024

(©) 2024 Matthew McManus. This work is licensed under a CC BY-NC-ND 4.0 license.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free
license to exercise any and all rights under copyright, including to reproduce, preserve,
distribute and publicly display copies of the thesis, or release the thesis under an
open-access license.

Authored by: Matthew McManus
Department of Electrical Engineering and Computer Science
May 10, 2024

Certified by: Alan Edelman
Professor of Applied Mathematics, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee


https://creativecommons.org/licenses/by-nc-nd/4.0/




Inertial Navigation System Drift Reduction Using Scientific
Machine Learning

by
Matthew McManus

Submitted to the Department of Electrical Engineering and Computer Science
on May 10, 2024 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND COMPUTER
SCIENCE

ABSTRACT

Inertial Navigation Systems (INS) are crucial for accurate navigation in GPS-denied
environments, but they suffer from drift errors that accumulate over time. This thesis intro-
duces Scientific Machine Learning (SciML) as an innovative approach to mitigate INS drift
by integrating physical models with machine learning algorithms. The proposed SciML ar-
chitecture leverages neural networks to learn complex error patterns and relationships from
simulated IMU data, outperforming conventional techniques like Kalman filtering. Uti-
lizing a simulation-focused approach with the Julia programming language and the High-
Performance Inertial Navigation Development Repository (HIDR) library, the research gen-
erates realistic datasets encompassing diverse trajectories, sensor errors, and operational
conditions. The SciML methodology incorporates data generation, INS mechanization, er-
ror modeling using neural networks, and a filtering framework that integrates the Extended
Kalman Filter (EKF) with batch filtering techniques. Experimental results demonstrate the
superior performance of the SciML-based INS in reducing position, velocity, and attitude
errors compared to a baseline Kalman filter. This pioneering approach of fusing SciML with
INS physical models holds promise for revolutionizing drift error mitigation and advancing
the field of navigation systems, paving the way for more accurate, reliable, and resilient nav-
igation in GPS-denied environments, with potential applications in aviation, robotics, and
autonomous vehicles.
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Chapter 1

Introduction

1.1 Background on Inertial Navigation Systems (INS)

Navigation plays a crucial role in various domains, including aviation, robotics, and au-
tonomous vehicles. Accurate and reliable navigation is essential to ensure the safety, effi-
ciency, and effectiveness of these systems. Inertial Navigation Systems (INS) have emerged as
a key technology to provide self-contained high-frequency navigation solutions in challenging
environments where external references, such as GPS, may be unavailable or unreliable.

In scenarios where GPS signals are unavailable, Inertial Navigation Systems (INS) become
crucial. An INS utilizes inertial sensors—specifically accelerometers and gyroscopes—to
independently estimate the position, velocity, and orientation of a moving object. The key
advantages of INS include its self-contained operation, high short-term accuracy, and the
ability to continuously provide precise navigation data at rapid update rates.

The core of an INS is the Inertial Measurement Unit (IMU) along with a sophisticated
computational unit. The IMU employs accelerometers and gyroscopes to measure the specific
forces and angular rates experienced by the object and these measurements are critical
for calculating changes in position, velocity, and orientation without external inputs. The

computational unit then processes these data points through advanced navigation algorithms
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to generate accurate and reliable navigation states, enabling effective operation across diverse

and challenging environments.

1.2 Problem Statement: INS Drift and Its Impact

Despite how useful INS can be in helping navigation, INS suffer from a critical limitation
known as drift. INS drift refers to the accumulation of errors in the navigation solution over
time as a result of the integration of sensor errors. The main causes of drift include biases,
scale factor errors, and random noise in accelerometer and gyroscope measurements.

The magnitude of drift varies between different grades of inertial sensors. Low-cost IMUs
can exhibit drift rates of several meters per minute, while high-end navigation-grade sensors
have drift rates on the order of kilometers per hour. The accumulation of these errors leads
to increasing uncertainty in the estimated position, velocity, and orientation of the object.

Consider an autonomous drone using INS for navigation in a forested environment where
GPS signals are obstructed. Over the course of a prolonged mission, the drone experiences
gradual drift from its intended flight path due to inaccuracies in its low-cost IMUs. This
drift could lead to navigational errors that result in the drone becoming lost or colliding with
obstacles, demonstrating the critical need for improved drift mitigation techniques.

INS drift has significant consequences in real-world applications. In aviation, drift can
lead to navigational errors and potential safety hazards. In autonomous vehicles, drift can
cause localization errors, leading to incorrect decision making and collisions. In mobile
robotics, drift can result in inaccurate mapping and inefficient path planning. This is why
it is very important to try to fix the drift problem since systems may not always have access

to GPS.

14



1.3 Research Questions and Hypotheses

The primary research question addressed in this thesis is: Can Scientific Machine Learning
(SciML) techniques outperform traditional methods in reducing INS drift? This question

leads to several sub-questions:

e How effectively can SciML learn complex error patterns and adapt to changing condi-

tions in INS?

e What are the potential advantages and limitations of SciML in INS drift reduction

compared to traditional approaches?

The hypothesis is that the proposed SciML approach will reduce the INS drift by a
significant percentage (e.g., X%) over a specific time period (e.g. Y hours) compared to
traditional Kalman Filtering techniques. This hypothesis will be tested through extensive
simulations and experiments, but before we get to that, let us explain the Proposed Solution

and expalin what Scientific Machine Learning is.

1.4 Proposed Solution: Scientific Machine Learning (SciML)
Approach

This thesis proposes a novel approach to addressing the challenge of INS drift through the
application of Scientific Machine Learning (SciML). SciML is a fusion of traditional machine
learning techniques and domain-specific scientific knowledge, aimed at creating models that
not only predict but also explain by adhering to the physical laws governing the systems they
model. In the context of INS drift, this involves integrating machine learning techniques such
as neural networks with established navigational laws to enhance prediction accuracy and

model interpretability.
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In tackling INS drift, the SciML approach leverages neural networks alongside Extended
Kalman Filtering (EKF'). Neural networks excel at identifying complex patterns and anoma-
lies in sensor data, which might be overlooked by conventional error modeling techniques.
They are designed with multiple layers and non-linear activation functions that effectively
capture the dynamic behavior of sensor errors.

The integration of neural networks with EKF brings together the strengths of adaptive
learning and precise state estimation. EKF provides a robust framework for updating es-
timates of the system’s state by optimally incorporating new measurements, while neural
networks adaptively improve the model by learning from ongoing data. This synergy en-
hances the capability of INS to maintain accuracy in environments where GPS and other
navigation aids are compromised.

This combined approach not only aims to reduce the drift in INS but also enhances the
system’s reliability and accuracy, making it highly suitable for challenging navigation envi-
ronments. By applying SciML, this research explores new frontiers in navigation technology,

aiming to significantly mitigate one of the most persistent challenges in inertial navigation.

1.5 Significance and Contributions of the Research

This research is significant because it tackles the pervasive issues of INS drift by leveraging
the capabilities of Scientific Machine Learning (SciML). It not only seeks to overcome the
constraints of traditional navigation systems, but also aims to set new benchmarks in the

accuracy and reliability of INS. The primary contributions of this thesis include:

1. Innovative Approach: Development of a SciML-based methodology for INS drift re-

duction, showcasing superior performance over traditional error mitigation techniques.

2. Enhanced Learning Capabilities: Detailed analysis of how SciML can identify
complex error patterns and dynamically adapt to changing operational conditions,

providing deeper insights into the behavior of inertial sensors.
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3. Practical Impact: Empirical evidence demonstrating the enhanced accuracy and
robustness of INS systems using SciML, with implications for improving real-world

navigation in sectors like aviation, robotics, and autonomous vehicles.

By pushing the boundaries of what is possible with INS technology, this thesis contributes
to the broader field of navigation, offering pathways to more reliable and efficient systems

that can operate effectively in GPS-denied environments.

1.6 Thesis Structure Overview

This thesis is organized into several chapters, each dedicated to different aspects of Inertial
Navigation Systems (INS) and the application of Scientific Machine Learning (SciML) for

drift reduction. The structure is as follows:

e Chapter 1: Introduction - This chapter provides an overview of the thesis, includ-
ing the background on INS, the problem statement regarding INS drift, the research

questions, the proposed SciML solution and the significance of the research.

e Chapter 2: Basics of Inertial Navigation and Operational Principles - Cov-
ers the foundational concepts of INS, including details about sensor characteristics,

navigation equations, and the sources of errors that affect INS performance.

e Chapter 3: Redefining INS with Scientific Machine Learning - This chap-
ter introduces the key principles and techniques of SciML relevant to this research,

including Neural Networks and Kalman Filtering.

e Chapter 4: Simulation for INS Research - Describes the simulation environment

and the tools and techniques used to generate synthetic INS data.

e Chapter 5: SciML Methodology for INS Drift Reduction - Presents the de-
tailed SciML approach and architecture developed to reduce INS drift, including the

specific architectures of the system.
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e Chapter 6: Experimental Results and Analysis - Demonstrates the effectiveness
of the SciML approach through extensive simulations and experimental results. This

chapter also provides a comparative analysis with traditional error mitigation methods.

e Chapter 7: Conclusion - Summarizes the research, its key findings, and the broader
impact on advancing INS technologies. This chapter also identifies open questions and
suggests areas for further investigation, inspiring future research directions in the field

of intelligent navigation systems.
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Chapter 2

Basics of Inertial Navigation and

Operational Principles

2.1 Introduction to INS

An Inertial Navigation System (INS) is a self-contained navigation system that determines
the position, velocity, and orientation of a moving object without relying on external refer-
ences|1]. As I said earlier, the core operational principle of an INS is based on the concept of
dead reckoning|2|, which involves integrating the accelerations and angular rates measured
by inertial sensors to track the object’s motion relative to a known starting point.

The main components of an INS include:

1. Inertial Measurement Unit (IMU)(Figure A.1): An IMU consists of a triad of ac-
celerometers and a triad of gyroscopes. Accelerometers measure the specific force (ac-
celeration due to motion and gravity) along three orthogonal axes, while gyroscopes

measure the angular rates about the same three axes.

2. Computational Unit: The computational unit, often a microprocessor or a dedicated
navigation computer, processes the raw sensor data from the IMU using navigation

algorithms. Perform coordinate transformations, integrates acceleration and angular
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rates, and applies corrections based on sensor calibration parameters and error models.

3. Initialization and Alignment Unit: This unit provides the initial position, velocity,
and orientation of the INS, which serve as the starting point for the dead reckoning
process. Initial alignment can be achieved through various methods, such as manual

input, external aiding (e.g. GPS), or gyrocompassing,.

The main advantages of INS include their self-contained nature, high short-term accuracy;,
and the ability to provide continuous navigation information at high update rates|3]. How-
ever, the accuracy of INS tends to drift over time due to the accumulation of sensor errors,
which requires periodic updates or integration with other navigation systems for long-term
accuracy.

In the following sections, we will dive deeper into the components of INS, including inertial
measurement units (IMUs), their error characteristics, and the operational principles of INS,
such as dead reckoning, initialization, and alignment. We will also discuss error modeling and

compensation techniques to mitigate the impact of sensor errors on the navigation solution.

2.2 Inertial Measurement Units (IMUs)

As discussed previously, an Inertial Measurement Unit (IMU) consists of a set of three
accelerometers and three gyroscopes, each rigidly mounted to measure specific force and
angular rate along three orthogonal axes: z°, 3°, and 2°. The configuration of these sensors
allows for precise measurements critical in the process of dead reckoning, detailed further
in subsequent sections. The schematic representation below illustrates the orientation and
alignment of accelerometers and gyroscopes within an IMU[4].

The accelerometers measure specific force, which includes both gravitational acceleration
and acceleration due to motion, while the gyroscopes measure the angular rate relative to
an inertial frame. These measurements were combined to track the object’s movement in a

three-dimensional space accurately.
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Figure 2.1: Conceptual diagram of an Inertial Measurement Unit (IMU) with three ac-
celerometers (blue cubes) and three gyroscopes (green cylinders), oriented along the z°, 3,
and 2’ axes.

2.2.1 Accelerometers

Accelerometers are a key component of an INS, measuring the specific force acting on the
moving object. This includes both the linear acceleration due to the object’s motion and
the acceleration due to gravity.

In an INS, the accelerometer trio measures the accelerations along the three orthogonal
axes (x,y,z) of the body frame. These acceleration measurements are integrated once to
obtain the velocities and again to derive the position information of the object in the body
framel5].

Now, there are two main challenges associated with accelerometers in an INS:

e Distinguishing Accelerations: Accelerometers cannot inherently distinguish be-

tween linear accelerations caused by motion and the constant acceleration due to grav-
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ity. This poses a challenge for INS, as the acceleration measurements must be properly
decomposed into their inertial (motion-induced) and gravitational components to ac-

curately track the object’s movement.

e Integration Drift: The integration process used to obtain velocities and positions
from accelerometer measurements is susceptible to drift over time due to sensor errors
and noise. This drift can lead to significant errors in position and velocity estimates if

not properly addressed.

To mitigate these challenges, accelerometer calibration and compensation techniques are
applied within the INS algorithms. This includes estimating and removing biases, apply-
ing scale factor corrections, and filtering noise through algorithmic means such as Kalman
filtering. I will walk through how we can use SciML techniques to solve this problem in
Chapter 3.

Furthermore, the accelerometer measurements must be rotated (resolved) from the body
frame to the navigation frame using the attitude information derived from the gyroscopes.
This step is crucial for consistently integrating the accelerations in the correct navigation
frame and accurately tracking the object’s motion. More details on the proper navigation
frames are provided in Section 2.3.2.

Like gyroscopes, accelerometers are subject to similar error sources such as bias, scale fac-
tor, and noise. Proper calibration and compensation techniques are essential to compensate

for these error sources and ensure accurate navigation performance.

2.2.2 Gyroscopes

Gyroscopes are another essential component of an INS, measuring the angular rate (i.e., how
quickly the object rotates around its axes). This information is crucial for determining the
object’s changing orientation over time.

In an INS, the gyroscope triad measures the rotation rates about the three orthogonal
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axes (x, y, z) of the body frame. These angular rate measurements are integrated to track
the changing attitude (orientation) of the object relative to a reference frame, typically an
inertial navigation frame.

There are two main reasons why the information from gyroscopes is vital in an INS:

e Resolving Accelerations: The accelerations measured by the accelerometers are
initially expressed in the body frame. To properly integrate these accelerations and
obtain velocities and positions in a navigation frame, the accelerations must be rotated
(resolved) from the body frame to the navigation frame using the attitude information
derived from the gyroscopes. This process ensures that the accelerations are correctly

represented in the desired reference frame for accurate navigation.

e Tracking Orientation Changes: As the object maneuvers, its orientation relative
to the navigation frame changes continuously. The gyroscope measurements enable
the INS to account for these orientation changes, ensuring that the accelerations are
consistently resolved and integrated in the correct navigation frame. By tracking the
object’s attitude, the INS can maintain an accurate representation of its motion in

three-dimensional space.

However, like accelerometers, gyroscopes are subject to various error sources, such as
bias, scale factor, and noise. These errors can accumulate over time, leading to drift in the
attitude estimates. Proper calibration and compensation techniques are essential to mitigate
these error sources and maintain accurate orientation tracking.

Bias refers to a constant offset in the gyroscope measurements, while scale factor errors
cause a proportional deviation in the angular rate readings. Noise, on the other hand,
introduces random fluctuations in the measurements. These errors, if left uncompensated,
can result in significant drift in the attitude estimates over time.

To address these challenges, advanced calibration and compensation techniques are em-

ployed within the INS algorithms. These techniques aim to estimate and correct for the
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gyroscope errors, minimizing their impact on the navigation solution. We will delve into
these techniques in more detail in Chapter 3, where we will explore various approaches to
mitigate the effects of gyroscope errors and enhance the overall accuracy of the INS.

In summary, gyroscopes play a vital role in an INS by providing the necessary attitude in-
formation to resolve accelerations and track orientation changes. However, gyroscope errors
pose significant challenges that must be addressed through proper calibration and compen-
sation techniques. By effectively managing these errors, the INS can maintain accurate

attitude estimates and ensure reliable navigation performance.

2.3 INS Operational Principles

The operational principles of an Inertial Navigation System (INS) are based on the concept
of dead reckoning, which involves the continuous integration of acceleration and angular rate
measurements to determine the position, velocity, and orientation of a moving object relative
to a known starting point. The INS uses measurements from the Inertial Measurement Unit
(IMU), consisting of accelerometers and gyroscopes, to perform this integration process.

To understand the inner workings of an INS; it is essential to explore the mathematical
basis of dead reckoning, the strapdown mechanization algorithms, and the impact of noise
on the system’s performance. In addition, the initialization and alignment processes play a
crucial role in establishing the initial conditions and reference frames for accurate navigation.

In the following subsections, we will delve into the details of dead reckoning and strap-
down mechanization, examining the velocity and position update equations, error propaga-
tion, and the challenges posed by noise. We will also discuss the importance of initialization

and alignment in INS operations and the methods used to achieve them.
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2.3.1 Dead Reckoning and Strapdown Mechanization

Building upon the basic concepts introduced in the previous section, we will now delve
deeper into the math and key steps that govern the operation of Inertial Navigation Systems
(INS)[6]|7]. The core principle of an Inertial Navigation System (INS) is dead reckoning,
which involves the continuous integration of acceleration and angular rate measurements
to determine the position, velocity, and orientation of a moving object relative to a known
starting point. The mathematical basis of dead reckoning relies on the following velocity and
position update equations: The velocity at a future time ¢ + 7' is calculated by integrating
the acceleration a over the time interval from ¢ to ¢ + 7" and adding this to the velocity at

time ¢, as shown in the equation:
t+T
o(t+T) :/ a-dt +o(t) 2.1)
t

Similarly, the position at time t + T is determined by integrating the velocity v over the

same interval and adding it to the position at time ¢ :

p(t+1T) = /tHT v-dt+ p(t) (2.2)

In these formulas, v(t +7) and p(t + T') represent the velocity and position in the future
t + T, respectively. v(t) is the known velocity at the current time ¢, and p(t) is the current
position. This method updates each new position and velocity based on its previous state,
using the measured accelerations and velocities.

The paths we are integrating are discretized because a real inertial measurement unit will
give discrete sampled values, commonly between one hundred and six hundred hertz. But the

main problem with dead reckoning and IMU measurements is the noise within the system.
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If there is any amount of noise, n, in our sensor readings from the inertial measurement unit,
t+T
o(t+T) :/ (a+n) - dt +v(t) (2.3)
t

our calculated position will begin to diverge from the truth (Fig. 2.2).
This propagation of errors is a significant challenge in INS, as it causes an unbounded

drift in the navigation solution over time.

t+T
T-v v(t—|—T)=ft (a+n)-dt+v(t)

Figure 2.2: Dead reckoning (path integration) in one dimension. The light blue shows the
correct path without noise. The dark blue shows the calculated path with noise. The noise
error, which we are notating here as n, accumulates.

2.3.2 Navigation Frames and Coordinate Transformations

In an Inertial Navigation System (INS), the choice of navigation frames and the ability
to perform coordinate transformations are fundamental to the accurate representation and

processing of motion data. Navigation frames provide a reference for expressing the position,
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velocity, and orientation of the INS, while coordinate transformations allow the conversion
of measurements and quantities between different frames.

Below is a table summarizing the commonly used navigation frames in INS: the Earth-
Centered Earth-Fixed (ECEF) frame, the Sensor frame, and the Body frame. Each frame is

accompanied by a reference to its illustrative image.

Frame | Image Reference | Description

ECEF Figure A.3 The Earth-Centered Earth-Fixed (ECEF)
Frame is a global reference frame fixed rela-
tive to the Earth with its origin at the Earth’s
center of mass. Axes are aligned as follows:
X-axis points towards the prime meridian, Y-
axis points eastward, and Z-axis aligns with
the Earth’s rotation axis. Used for global po-
sitioning and satellite tracking.

Sensor Figure A.4 The Sensor Frame is a type of reference frame
that is fixed to the sensor. On VectorNav
sensors, the sensor frame is aligned as shown
in the referenced figure. The individual sen-
sor element measurement axes within the in-
strument are aligned to the sensor frame as
part of the calibration process. The "Mis-
alignment" or "Alignment Error" specifica-
tion indicates how closely the measurement
axes are aligned with the indicated sensor
frame.

Body Figure A.5 The Body Frame is fixed to the moving plat-
form where the INS is mounted. Axes are
aligned with the platform’s forward direc-
tion, right side, and downward direction,
forming a right-handed coordinate system.
Essential for onboard control and dynamics
analysis.

Table 2.1: Overview of Navigation Frames Used in INS

Coordinate transformations between these frames are facilitated by rotation matrices or
Direction Cosine Matrices (DCMs), which describe the orientation of one frame relative to
another. These matrices are critical for maintaining the accuracy and performance of INS

systems. For instance, the DCM from the body frame to the navigation frame, denoted as
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', is used to transform acceleration measurements from the body frame to the navigation

frame:

a” = COp - ab (2.4)

b is in the body frame, and

where a” is the acceleration vector in the navigation frame, a
Cy' represents the DCM from the body to the navigation frame.

DCMs are 3x3 orthogonal matrices that fulfill orthogonality and unit determinant prop-
erties. They can be parameterized using Euler angles, quaternions, or rotation vectors,
with quaternions often preferred in INS due to their computational efficiency and non-
susceptibility to the gimbal lock issue associated with Euler angles.

Further, the accurate determination and regular maintenance of DCMs are crucial for
optimal INS performance. These matrices are typically initialized using the initial alignment
process and continuously updated with angular rate measurements from gyroscopes. This
update process involves integrating these angular rates and applying necessary corrections
for phenomena like Earth’s rotation and transport rate.

Errors in coordinate transformations, arising from factors such as misalignment between
the IMU and the platform or errors in initial alignment, can significantly degrade navigation
accuracy. To mitigate these errors, advanced techniques like Kalman filtering and error
modeling are employed, enhancing the reliability and precision of the INS.

In conclusion, navigation frames and their accurate coordinate transformations consti-
tute core components of an INS, enabling consistent representation and integration of motion

data. The maintenance of precise DCMs is essential, not only for accurate data transforma-

tion but also for the overall reliability and functionality of navigation systems.

28



2.4 Error Modeling and Compensation Techniques

As I have discussed throughout this chapter, we have seen that error comes in various ways
in Inertial Navigation. To further illustrate this problem here is a real-life example:

Consider an autonomous firefighting robot equipped with an inertial navigation system.
As the robot navigates through a burning building, it deploys a water hose that introduces
several sources of noise into its guidance system. The recoil of the water pumping out of
the nozzle causes vibrations in the hose that translate to the robot itself, creating erroneous
readings in the IMU. Additionally, the hose dragging on the ground or getting caught on
debris creates friction and resistance forces that subtly change the robot’s path but are
not fully registered by the IMU. Finally, as the water-filled hose gets lighter, the IMU’s
acceleration readings become less reliable because of the changing mass. These types of
noise can cause the inertial navigation system’s calculations to become inaccurate, leading
to errors in the robot’s estimated position and orientation.

Now that we can see how large of a problem error can be let’s briefly go over what this

error looks like and then a more in-depth view of ways we can mitigate the affects of error

in IMUs.

2.4.1 FError Propagation

The errors in the inertial sensor measurements, such as biases, scale factor errors, and noise,
accumulate over time due to the integration process in the INS mechanization equations, as
we saw in equation 2.3. For example, a constant bias in the accelerometer measurements will
result in a linearly growing error in velocity and a quadratically growing error in position.
Similarly, a constant bias in the gyroscope measurements will cause a linearly growing error
in orientation, which in turn affects the transformation of accelerations from the body frame
to the navigation frame.

The propagation of error in an INS can be modeled using error state equations, which
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describe the evolution of errors in navigation states (position, velocity, and orientation) as
functions of errors in inertial sensor measurements. These error state equations form the basis
for many error compensation techniques, such as Kalman filtering, which aim to estimate

and correct errors in the navigation solution.

2.4.2 Kalman Filtering Overview

Kalman filtering is a powerful technique widely used in INS for estimating and compensating
for the errors in the navigation states. The Kalman filter is a recursive algorithm that
combines knowledge of the system dynamics, sensor measurements, and their associated
uncertainties to provide an optimal estimate of the system states |[8].

In the context of INS, the Kalman filter is used to estimate the errors in the navigation
states (position, velocity, and orientation) and inertial sensor errors (biases, scale factors, and
misalignments). The filter operates by performing two main steps: prediction and update.

In the prediction step, the filter uses the INS mechanization equations and the error state
equations to propagate the estimated navigation states and their associated uncertainties
forward in time. This step relies on the knowledge of the system dynamics and the statistical
properties of the inertial sensor errors.

In the update step, the filter incorporates external measurements, such as GPS position
and velocity, to correct the predicted navigation states and sensor errors. The external
measurements are compared with the predicted measurements, and the difference (known
as the measurement residual) is used to update the estimated states and their uncertainties.
The update step helps to limit the growth of errors in the navigation solution and maintains
the accuracy of the INS over time.

Figure A.2 [9] illustrates the Kalman filtering process in practice, showing the predict,
measure, and update steps.

Kalman filtering is a vast topic, and its application to INS involves various aspects, such

as the choice of the error state model, the tuning of the filter parameters, and the handling
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of different types of external measurements. A deeper discussion of Kalman filtering can be

found in Section 3.3.
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Chapter 3

Redefining INS with Scientific Machine

Learning

As INS technologies grapple with inherent limitations such as error accumulation and re-
liance on external aids, SciML emerges as a potent solution capable of redefining traditional
methodologies. This chapter lays the groundwork for SciML in INS that leverages the capa-

bilities of machine learning infused with rigorous physical laws.

3.1 Motivation for SciML in INS

This section explores the compelling reasons behind integrating SciML into INS frameworks,
highlighting the deficiencies of conventional error mitigation strategies and illustrating how
SciML’s advanced capabilities can lead to more reliable, adaptive, and robust navigation
systems. The insights provided here set the stage for a deeper appreciation & understanding

of the methodology & results presented later on in Section 5 and Section 6.
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3.1.1 Limitations of Traditional INS Error Mitigation

Inertial Navigation Systems (INS) have been instrumental in providing autonomous guidance
for various applications, from aviation to autonomous vehicles. This subsection explores the
significant limitations of conventional INS error mitigation techniques, shedding light on why
advancements such as Scientific Machine Learning (SciML) are necessary for the evolution
of navigation technologies. Here are just a few major issues with traditional INS error
mitigation:

Simplified Error Models: Traditional error mitigation in INS is largely based on
models that simplify the complex dynamics of sensor errors. These models typically assume
that errors such as biases and scale factor inaccuracies remain constant or vary linearly
over time. Such assumptions do not account for the stochastic and non-linear nature of
real-world sensor errors, which can fluctuate due to a variety of factors such as temperature
changes, mechanical stresses, or electromagnetic interference. The inadequacy of these mod-
els becomes particularly evident in scenarios requiring high precision over long durations,
where even minor unmodeled error dynamics can accumulate, leading to significant drifts in
navigation accuracy.

Dependence on External Aiding: A common practice to counteract the inherent drift
in INS is to integrate external aiding sources such as GPS or other sensors. Although effective
in reducing long-term drift, this reliance introduces new vulnerabilities, including dependency
on the availability and integrity of the external signals. In environments where GPS signals
are weak or spoofed, such as urban canyons or under dense foliage, the INS might be deprived
of necessary corrections, thus degrading its reliability. In addition, the integration of these
external sources often adds complexity to the system architecture, increasing the potential
for failure points and the computational load.

Inflexibility to Sensor Variability: Conventional INS systems utilize static error mod-

els calibrated under specific conditions. These models are not designed to adapt to changes
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in sensor characteristics that may occur due to aging, wear, or environmental changes. As
a result, the system’s ability to accurately compensate for errors degrades unless frequent
recalibrations are performed, a process that is often impractical during normal operations.
This inflexibility can be detrimental in applications where long-term deployment without
maintenance is essential, such as in space navigation or underwater explorations.

These limitations highlight the need for more sophisticated approaches capable of ad-
dressing the dynamic and complex nature of INS errors. The next section explores how
Scientific Machine Learning (SciML) not only addresses these issues but also offers enhanced
adaptability and robustness, making it a formidable successor to traditional methods in the

field of inertial navigation.

3.1.2 Advantages of SciML Approaches

Traditional INS error mitigation techniques rely on mathematical models to characterize and
compensate for inertial sensor errors. These models, such as bias and scale factor models,
attempt to capture the systematic and stochastic behavior of the errors. However, these
approaches have limitations that can lead to suboptimal error compensation and reduced
INS accuracy.

Firstly, traditional error models often make simplifying assumptions about the nature
of sensor errors, assuming constant biases or linear scale factor errors. In reality, sensor
errors exhibit complex, nonlinear, and time-varying characteristics that are difficult to ac-
curately model using conventional techniques. Secondly, traditional approaches often rely
on external aiding sources, such as GPS, to mitigate long-term INS drift. While providing
periodic corrections, these sources introduce vulnerabilities, as GPS signals can be jammed,
spoofed, or blocked in certain environments. Lastly, adapting pre-calibrated error models to
changing operational conditions or aging sensors requires frequent recalibration, which can
be impractical in many applications.

In light of these limitations, Scientific Machine Learning (SciML) has emerged as a
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promising paradigm that combines data-driven learning with the incorporation of physical
knowledge. SciML techniques offer several advantages for INS error mitigation:

Data-driven learning allows SciML models to capture complex, nonlinear error patterns
directly from sensor data. By training on large datasets of inertial sensor measurements,
these models can learn intricate error patterns and correlations that may be difficult to
model explicitly using traditional techniques. This leads to a more accurate representation
of sensor errors and improved INS accuracy.

One of the key components of SciML for INS error mitigation is the use of neural net-
works. Neural networks are powerful machine learning models that can learn complex,
nonlinear relationships between inputs and outputs. In the context of INS error mitigation,
neural networks can be trained on large datasets of inertial sensor measurements to learn
the intricate error patterns and correlations present in the data. By leveraging the ability
of neural networks to capture these complex relationships, SciML models can provide more
accurate and robust error compensation compared to traditional techniques.

The flexibility and adaptability of neural networks make them particularly well-suited
for handling the time-varying and dynamic nature of sensor errors. Neural networks can be
designed with various architectures and hyperparameters to optimize their performance for
specific INS applications. For example, recurrent neural networks (RNNs) can be employed
to capture the temporal dependencies in sensor error patterns, while convolutional neural
networks (CNNs) can be used to extract spatial features from multi-axis sensor data. The
choice of neural network architecture and training methodology plays a crucial role in the
effectiveness of SciML models for INS error mitigation.

SciML models have the potential to adapt to changing sensor characteristics and oper-
ational conditions without requiring explicit recalibration or manual intervention. By con-
tinuously learning from incoming sensor data, these models can autonomously adjust their
parameters to capture evolving error patterns. This adaptability is particularly valuable in

scenarios where sensor errors drift over time or when the INS operates in dynamic environ-
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ments with varying conditions. The motivation for applying SciML techniques to INS error
mitigation stems from their potential to overcome the limitations of traditional approaches
and deliver more accurate, robust, and adaptable solutions. By leveraging data-driven learn-
ing while incorporating physical knowledge, SciML offers a promising avenue for advancing

INS performance and enabling more reliable navigation in challenging scenarios.

3.2 Neural Networks in Sensor Error Calibration

Neural networks have emerged as a powerful tool in the field of Scientific Machine Learning
(SciML), offering new possibilities for enhancing the accuracy and reliability of Inertial Navi-
gation Systems (INS). By leveraging the ability of neural networks to learn complex patterns
and relationships from data, we can develop more sophisticated and adaptive approaches for
sensor error calibration. In this section, we will explore the role of neural networks in INS,
focusing on their potential to improve error modeling and correction. We will discuss the ad-
vantages of neural networks over traditional calibration methods and delve into the specific
architectures and configurations that are well-suited for INS applications. By understanding
the strengths and adaptability of neural networks, we can harness their power to mitigate

sensor errors and enhance the overall performance of inertial navigation systems.

3.2.1 Neural Networks in INS

Using neural networks in the field of Inertial Navigation Systems (INS) marks a shift towards
more data-driven approaches for sensor error calibration. As a core component of Scientific
Machine Learning (SciML), neural networks bring to the table an unparalleled ability to
discern and model complex patterns in data, which traditional statistical methods might miss
or oversimplify. This section introduces the rationale behind integrating neural networks into
INS, emphasizing their potential to enhance the system’s accuracy and reliability through

advanced error modeling and correction.
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Neural networks, with their deep learning capabilities, are particularly adept at handling
the nonlinear and complex error characteristics inherent in inertial sensors. Unlike tradi-
tional error mitigation techniques, which often rely on simplified assumptions and static
models, neural networks learn directly from the data. This learning enables them to adapt
to the intricacies and dynamics of sensor errors, offering a more nuanced understanding and
correction of these errors.

Moreover, the flexibility of neural networks allows them to be tailored specifically to the
needs of INS. This dynamic adaptability is crucial for applications where INS must perform
reliably over long periods or in varying environments.

In comparing neural networks to traditional calibration methods, several advantages be-

come clear:

e Dynamic Error Modeling: Neural networks continually refine their understanding
of sensor errors as they process more data. This ongoing learning process contrasts
sharply with traditional methods, which typically use fixed parameters that may not

reflect changes in sensor behavior over time or under different environmental conditions.

e Generalization Capabilities: Well-trained neural networks can generalize from their
training data to handle unseen scenarios, making them more robust to the kinds of

novel situations that often arise in real-world navigation tasks.

e Integration Flexibility: Neural networks can be seamlessly integrated into existing
INS frameworks, enhancing their error correction capabilities without necessitating a

complete overhaul of the system.

This introduction sets the stage for a deeper exploration into the specific architectures
and configurations of neural networks that are optimized for INS applications. Following
sections will detail the network structures, training processes, and implementation strategies
that harness the full potential of neural networks to recalibrate and enhance the accuracy of

inertial navigation systems.
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3.2.2 Neural Network Architecture

The architecture of neural networks used in sensor error calibration for Inertial Navigation
Systems (INS) is crucial for effectively processing and learning from complex sensor data.
Figure 3.1 illustrates a typical neural network architecture used in this context, designed to

handle the nonlinear and complex error characteristics inherent in inertial sensors.

input layer hidden layer 1 hidden layer 2 output layer

Figure 3.1: Example of a neural network architecture used in sensor error calibration for
INS. This network includes an input layer, multiple hidden layers, and an output layer.

Basic Architecture Overview: Neural networks for INS typically consist of several

components, each playing a critical role in processing sensor data:

e Input Layer: This layer receives raw data from sensors, such as accelerometer and

gyroscope readings. It distributes the data to subsequent layers without modification.

e Hidden Layers: As shown in Figure 3.1, the hidden layers perform the majority of
computational tasks, processing features extracted from the input data. These layers
use activation functions like ReLU (Rectified Linear Unit) or tanh (hyperbolic tangent)

to introduce non-linearity, enabling the network to capture complex patterns.
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e Output Layer: The final layer outputs the error corrections or calibrated data. De-
pending on the calibration task, a linear activation function may be employed for

regression outputs, which are typical in error calibration scenarios.

Example Configuration: A typical configuration for a neural network in INS applica-

tions might include:

e Input Layer: Takes three-dimensional data from each sensor (e.g., x, y, z coordinates

from an accelerometer).
e First Hidden Layer: Comprises 100 neurons with ReLLU activation.
e Second Hidden Layer: Consists of 50 neurons, also with RelLU activation.

e Output Layer: Utilizes a linear activation function to output continuous values that

represent the corrected sensor errors.

Adjustments to this architecture can be made based on specific needs, such as the com-
plexity of error patterns and available computational resources. The flexibility and adaptabil-
ity of neural networks make them highly effective for dynamic error modeling and correction
in INS.

This configuration is just a starting point. The actual architecture can be adjusted based
on specific requirements such as the complexity of the sensor error characteristics and the
computational resources available.

Adaptations for INS: In the context of INS, neural networks might incorporate specific

adaptations to better handle the characteristics of sensor data:

e Recurrent Neural Networks (RNNs): For time-series data like that from INS
sensors, RNNs or their more advanced variants like LSTM (Long Short-Term Memory)
or GRU (Gated Recurrent Units) networks are often used. These models are capable
of capturing temporal dependencies and dynamics in the sensor data, which are crucial

for accurate error modeling.
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e Convolutional Neural Networks (CNNs): Although more commonly associated
with image data, CNNs can also be applied to time-series sensor data. They can extract
spatial-temporal features from multichannel sensor data, which can be particularly

useful in complex dynamic environments.

Training and Tuning: The effectiveness of a neural network significantly depends on
proper training and parameter tuning. This involves selecting the right number of layers and
neurons, choosing appropriate activation functions, and setting the hyperparameters like the
learning rate and the number of epochs. Moreover, techniques such as cross-validation and
regularization (e.g., dropout, L2 regularization) are essential to prevent overfitting and ensure
that the network generalizes well to new, unseen data.

The architecture described here provides a robust framework for developing neural net-
work models capable of addressing the specific challenges posed by sensor error calibration
in INS. By leveraging such advanced architectures, INS can achieve higher accuracy and re-

liability, critical for applications ranging from autonomous vehicles to aerospace navigation.

3.3 Extended Kalman Filter for State Estimation

In this section, we will further investigate what was talked about earlier in Section 2.4. We
know that the Extended Kalman Filter (EKF) is an extension of the Kalman Filter (KF),
which is optimal for linear systems with Gaussian noise. What Extended Kalman Filtering
provides over traditional Kalman Filtering is that it can process nonlinear systems due to
the addition of the Taylor series expansion module. With this addition EKF is often used in
state estimation problems for linear systems with unknown parameters, making it ideal for
solving estimation issues in SLAM, Navigation suystems, and GPS.

In the following sections I will briefly go over the inner workings of EKF and what it
means for INS. If you would like to investigate the math behind EKF you can find further

details in these papers [8] and [10].
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3.3.1 Extended Kalman Filter Overview

The Extended Kalman Filter is a powerful tool for state estimation in nonlinear systems,
making it particularly well-suited for INS applications. The EKF extends the traditional
Kalman Filter by linearizing the nonlinear system dynamics and measurement models around
the current state estimate using a first-order Taylor series expansion. This linearization
allows the EKF to handle the nonlinearities present in INS, such as the nonlinear relationship
between the sensor measurements and the system states.

The EKF operates in a two-step process: prediction and update. In the prediction step,
the filter uses the system model to predict the state estimate and its associated uncertainty
(covariance) forward in time. The update step occurs when new measurements become
available, and the filter uses these measurements to correct the predicted state estimate and

covariance.

3.3.2 EKF Formulation for INS

To apply the Extended Kalman Filter (EKF) to an Inertial Navigation System (INS), we
need to define two key components: the system dynamics model and the measurement model.

The system dynamics model describes how the states of the system, such as position, ve-
locity, and orientation, change over time based on the measurements from the inertial sensors
(accelerometer and gyroscope). This model is nonlinear due to the complex relationships
between the sensor measurements and the system states.

The measurement model relates the observed measurements from external sensors, such
as GPS, magnetometer, or other aiding sensors, to the system states. This model is also
nonlinear because the relationship between the measurements and the states is often complex
and cannot be described by simple linear equations.

To handle these nonlinearities, the EKF linearizes the system dynamics and measure-

ment models around the current state estimate using a first-order Taylor series expansion.
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This linearization process involves computing Jacobian matrices, which are essentially the
derivatives of the nonlinear functions with respect to the system states.

The EKF operates in two main steps: prediction and update. In the prediction step,
the filter uses the linearized system dynamics model to predict the state estimate and its
associated uncertainty (covariance) forward in time. This step takes into account the inertial
sensor measurements and any control inputs applied to the system.

When new measurements from external sensors become available, the EKF performs
the update step. It uses the linearized measurement model to correct the predicted state
estimate and covariance based on the difference between the actual measurements and the
predicted measurements. This correction is weighted by the Kalman gain, which determines
how much trust the filter places in the new measurements compared to the predicted state
estimate.

The EKF iteratively repeats the prediction and update steps, continuously refining the
state estimate and its covariance as new sensor measurements arrive. This process allows the
EKF to effectively estimate the system states and their uncertainties, even in the presence
of nonlinear system dynamics and measurement models.

By applying the EKF to INS, we can obtain a more accurate and reliable estimate of
the system states, such as position, velocity, and orientation, by fusing information from
multiple sensors and accounting for the nonlinearities inherent in the system. This improved
state estimate can then be used for various applications, such as navigation, guidance, and

control of vehicles or robots equipped with inertial sensors.

3.3.3 Benefits and Limitations

The Extended Kalman Filter offers several benefits for state estimation in INS:

1. It can handle the nonlinear system dynamics and measurement models present in INS.

2. Tt provides a recursive framework for estimating the system states and their uncertain-
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ties.

3. It allows for the fusion of multiple sensor measurements to improve the overall state

estimate.

However, the EKF also has some limitations:

1. The linearization of the nonlinear models can introduce errors, especially if the system

is highly nonlinear or the state estimate is far from the true state.

2. Tt assumes that the process and measurement noises are Gaussian, which may not

always be the case in real-world scenarios.

3. It can be computationally expensive, particularly for high-dimensional state spaces or

frequent measurement updates.

Despite these limitations, the Extended Kalman Filter remains a widely used and effective
technique for state estimation in INS. Its ability to handle nonlinearities and fuse multiple
sensor measurements makes it a valuable tool for improving the accuracy and reliability of
inertial navigation systems.

In summary, the Extended Kalman Filter is a powerful extension of the traditional
Kalman Filter that enables state estimation in nonlinear systems, such as Inertial Navi-
gation Systems. By linearizing the system dynamics and measurement models around the
current state estimate, the EKF can effectively estimate the system states and their un-
certainties, while incorporating multiple sensor measurements. While the EKF has some
limitations, such as the potential for linearization errors and the assumption of Gaussian

noise, it remains a widely used and valuable technique for enhancing the performance of

INS.
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Chapter 4

Simulation for INS Research

Simulation plays a vital role in the development and evaluation of Scientific Machine Learning
(SciML) techniques for Inertial Navigation Systems (INS) drift reduction. Using simulated
environments, researchers can generate diverse datasets, control error sources, and explore
challenging scenarios that may be difficult to replicate in real-world experiments. This
chapter focuses on the rationale for adopting a simulation-focused approach, the advantages
it offers, and the challenges associated with real-world datasets. We will also delve into the
specifics of our simulation environment, including the tools and software used, the approach

to realistic physics modeling, and the process of simulated data generation.

4.1 Rationale for Simulation-Focused Approach

In this section, we will explore the reasons behind choosing a simulation-focused approach
to develop SciML techniques for INS drift reduction. We will discuss the advantages of
simulation, such as the ability to control error sources, generate large and diverse datasets,
and investigate challenging scenarios. In addition, we will highlight the limitations and
complexities of real-world datasets, which further motivate the use of simulations in the

research and development phase.
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4.1.1 Advantages of Simulation

Simulation offers several key advantages in the research and development of Scientific Ma-
chine Learning (SciML) techniques for Inertial Navigation Systems (INS). Firstly, simulations
allow researchers to precisely manipulate sensor biases and noise characteristics, providing
control over error sources and their magnitudes. This control is critical, as described in
Chapter 2, where sensor errors such as biases and noise in accelerometers and gyroscopes
are detailed, highlighting their impact on INS accuracy.

Secondly, simulations enable the generation of large and diverse datasets, which are cru-
cial for training and validating SciML techniques. Simulations provide a means of generating
large amounts of synthetic data that cover a wide range of trajectories, motion profiles, and
error conditions. This ability to create extensive and varied datasets is essential for improv-
ing the robustness and generalization capabilities of SciML models. By training and testing
on a rich set of simulated examples, researchers can develop models that are better equipped
to handle real-world variations and uncertainties.

Although the ultimate goal is to transfer and validate these models on real-world hard-
ware, the simulation-focused approach offers a valuable foundation for understanding the

behavior and performance of SciML techniques in a controlled and repeatable environment.

4.1.2 Challenges of Real-World Datasets

While real-world datasets are essential for validating and fine-tuning SciML models, they
present several limitations and complexities that motivate the use of simulations in the re-
search and development phase. One major challenge is the limited availability of high-quality
labeled INS data. Collecting real-world high-quality data requires expensive equipment,
time-consuming experiments, and precise ground truth measurements, which can be difficult
to obtain in practice.

Real-world datasets often suffer from sensor misalignments, time synchronization issues,
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and unexpected behaviors in dynamic environments. Sensor misalignments occur when the
sensors are not perfectly aligned with the vehicle’s axes, introducing errors in the INS mea-
surements that are difficult to identify and compensate for during data collection. Time
synchronization between different sensors and the ground truth system is another challenge,
as even small timing errors can lead to significant inaccuracies in the INS solution.

To illustrate these challenges, I can share my personal experience working with the Oxford
Inertial Navigation dataset|[11]|, a well-known real-world INS dataset. While the Oxford
dataset provides valuable data from a real vehicle, I encountered several difficulties during my
research. The dataset lacked detailed information about the sensor characteristics, such as
noise levels and biases, making it challenging to develop accurate error models. Additionally,
the ground truth measurements were not always reliable, particularly in areas with poor
GPS coverage, which made it difficult to evaluate the performance of the SciML techniques
accurately. These challenges highlight the limitations of relying solely on real-world datasets

for the development and testing of SciML algorithms.

4.2 Simulation Environment

The simulation environment is built using Julia, a high-performance programming language
well-suited for numerical analysis and computational science. Julia’s efficiency in handling
complex mathematical operations and its rich ecosystem of packages make it an ideal choice
for simulating sophisticated INS scenarios and implementing SciML algorithms.

At the core of our simulation environment is the HIDR (High-Performance Inertial Navi-
gation Development Repository) library, a proprietary collection of packages and tools specif-

ically designed for simulating INS. HIDR integrates several essential components, including:

e IMU simulation package: Generates realistic sensor data, incorporating noise, biases,

and other error characteristics.

e Extended Kalman Filter (EKF) solver: Implements the EKF algorithm for state esti-
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mation and error correction.

e Plotting and comparison tools: Facilitates the visualization and analysis of simulation

results.

These packages, seamlessly integrated within the Julia ecosystem, streamline the devel-
opment process and enable efficient experimentation and iteration. The modular structure
of HIDR allows for easy customization and extension, accommodating a wide range of INS
configurations and scenarios.

By leveraging the capabilities of Julia and HIDR, our simulation environment provides a
robust platform for developing and evaluating SciML techniques for INS drift reduction. The
realistic modeling of sensor errors, vehicle dynamics, and environmental factors ensures that
the simulated data closely resembles real-world conditions, enhancing the transferability of
the developed algorithms to practical applications.

In the following sections, we will delve into the specifics of simulated data generation and
discuss how this simulation environment contributes to the advancement of SciML method-

ologies for INS drift reduction.

4.3 Simulated Data Generation

The process of simulated data generation involves several key steps, each designed to ensure
that the data reflects realistic navigation conditions as closely as possible. Starting from the
generation of a trajectory path, moving through the calculation of corresponding velocities
and gravitational effects, and culminating in the simulation of sensor outputs, each step is
crucial. This section will delve into the specifics of these steps, illustrated by the flowchart
below that outlines the sequence from trajectory generation to the final output of simulated
INS data.

Leveraging the operational principles of INS outlined in Chapter 2, including the integra-

tion of acceleration and angular rates, our simulation environment mimics these processes
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IMU Data Generation Flowchart
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Figure 4.1: Overview of the IMU Data Generation Process

to generate realistic navigational paths. The data generation begins with the creation of
a trajectory path, defining latitude, longitude, and altitude to establish a baseline for nav-
igational computations. From this we can generate various paths including simple linear
trajectories or more complex figures like a figure eight, simulating different driving or flying
conditions.

Following trajectory generation, velocities in the north, east, and down(vne) directions
are computed. This calculation translates the geographic changes into directional velocities,
which are crucial for the next step of the process, namely the calculation of gravity. Gravity
values are calculated at different trajectory points to accurately simulate the gravitational
influence that affects the accelerometer measurements.

The roll, pitch, and yaw (RPY) are then determined from the velocity and gravity data.

These orientation angles are essential for aligning the vehicle’s movement within its environ-
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ment, providing fundamental data for the subsequent inverse mechanics process.
Inverse mechanics play a critical role in simulating an ideal INS’s response[12]. This step

involves:

e Simulating perfect sensor outputs by theoretically calculating the specific forces and

angular rates that inertial sensors would record in an error-free scenario.

e Back-calculating raw IMU outputs to determine what the accelerometers and gyro-

scopes should ideally measure based on the vehicle’s movements.

Once the "perfect" IMU data is generated, it is augmented with realistic errors, such as
biases, noise, and random drifts. These imperfections simulate the actual conditions under
which INS algorithms must operate, adding complexity to the data set.

The final mechanization applies these augmented data through algorithms that mimic ac-
tual INS operations, factoring in all introduced errors to compute the navigation states. This
step tests the robustness of the SciML techniques in correcting inaccuracies and improving
overall navigation accuracy.

The output from this process includes time-stamped data sets of positions (1lh), velocities
(vne), and orientations (rpy), serving as the simulated ground truth for further validation of
INS algorithms.

Through this detailed and systematic approach, the simulation environment supports
comprehensive testing and validation of INS algorithms, ensuring that the SciML techniques

are robust and effective in real-world navigation scenarios.

4.4 Conclusion

In this chapter, we have discussed the simulation-focused approach adopted in our research
for developing SciML techniques for INS drift reduction. Simulation offers numerous ben-
efits, such as the ability to control error sources, generate large and diverse datasets, and

investigate challenging scenarios that may be difficult to replicate in real-world experiments.
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We have highlighted the advantages of simulation, which include precise manipulation
of sensor biases and noise characteristics, as well as the generation of extensive and varied
datasets. These capabilities are essential for improving the robustness and generalization of
SciML models, allowing researchers to develop techniques that can better handle real-world
variations and uncertainties.

Additionally, we have addressed the challenges associated with real-world datasets, such
as limited availability, sensor misalignments, and time synchronization issues. While real-
world data is crucial for validating the developed techniques, the simulation-focused approach
serves as a vital intermediary step, enabling us to mitigate these challenges and develop
robust algorithms.

The simulation environment, built using Julia and leveraging the proprietary HIDR li-
brary, provides a powerful platform for simulating sophisticated INS scenarios and imple-
menting SciML algorithms. HIDR integrates essential components, including an IMU sim-
ulation package, an Extended Kalman Filter (EKF) solver, and plotting and comparison
tools. The seamless integration of these packages within the Julia ecosystem streamlines the
development process and enables efficient experimentation and iteration.

Moreover, the simulation environment emphasizes realistic modeling of sensor errors,
vehicle dynamics, and environmental factors, ensuring that the simulated data closely re-
sembles real-world conditions. This enhances the transferability of the developed algorithms
to practical applications.

The process of simulated data generation, as outlined in Section 4.3, involves a systematic
approach that mimics the operational principles of INS. By generating realistic trajectories,
computing velocities and gravitational effects, and simulating sensor outputs with realistic
errors, the simulation environment supports comprehensive testing and validation of INS
algorithms.

In the following chapter, we will delve into the specifics of the SciML. methodology for

INS drift reduction, building upon the foundation established by our simulation-focused
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approach. By leveraging the capabilities of our simulation environment, we aim to develop
robust and effective techniques that can significantly improve the accuracy and reliability of

inertial navigation systems.
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Chapter 5

SciML Methodology for INS Drift

Reduction

5.1 Introduction

Building upon the foundational knowledge of Data Generation, Inertial Navigation Systems
(INS), and Scientific Machine Learning (SciML) discussed in the previous chapters, this
chapter focuses on the integration of these components to address the critical challenge of
drift reduction in INS.

The proposed SciML architecture integrates neural network models with traditional INS
methods, aiming to harness the power of machine learning to capture complex error patterns
and relationships from data. By combining the strengths of both domains, this approach
seeks to overcome the limitations of conventional error correction methods and provide a

more robust and accurate navigation solution.

5.2 Proposed SciML Architecture

Figure 5.1 presents a high-level conceptual diagram of the proposed SciML architecture for

INS drift reduction. The architecture integrates neural network models with traditional INS
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Figure 5.1: High-level conceptual diagram of the proposed SciML architecture for INS drift
reduction

components to enhance the error correction capabilities of the system. The key components

of the architecture and their roles are as follows:

e Data Generation: This component focuses on creating a ground truth trajectory
and injecting sensor errors into the ideal IMU data. It provides the necessary datasets
for training and validating the SciML models. The data generation process leverages
a simulation environment to create realistic scenarios and control the characteristics of

the injected errors. The details of this process are discussed in Section 4.3.

e INS Mechanization: The INS mechanization component implements the core INS

calculations using the corrupted IMU data. It estimates the position, velocity, and
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orientation of the system, considering the errors accumulating over time. The mecha-
nization code forms the backbone of the INS and provides the foundation for integrating
the SciML models. While the foundations of INS mechanization were laid out in Chap-
ter 2, a high-level overview will be provided in this chapter to illustrate its role in the

proposed architecture.

e Error Modeling: This component leverages neural networks to model and correct
sensor biases effectively. Separate models are tailored for accelerometer and gyroscope
data, addressing the distinct error characteristics of each sensor type. Through train-
ing, these neural networks learn to associate the corrupted sensor data with accurate

bias corrections, thereby enhancing error compensation capabilities.

e Filtering Framework: This framework integrates neural network-derived models
with the dynamics of the Inertial Navigation System (INS) to perform sophisticated
state estimation. It employs a batch filtering approach that incorporates bias cor-
rections provided by the neural networks into the fundamental INS dynamics model.
An Extended Kalman Filter (EKF) is utilized to refine state estimation, processing

batches of data to enhance the accuracy of the estimated trajectories significantly.

The rationale behind incorporating neural networks into the INS framework lies in their
ability to learn complex error patterns and relationships from data. By leveraging the power
of machine learning, the proposed architecture aims to enhance the error correction capabil-
ities of the INS and mitigate the impact of sensor biases on the overall navigation accuracy.

By integrating the SciML components with the traditional INS mechanization and filter-
ing techniques, the proposed architecture aims to achieve superior navigation accuracy and
robustness in the presence of sensor errors and drift. The subsequent sections will delve into
the details of each component, explaining their implementation and the underlying principles

that govern their operation.
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5.3 Data Generation

Data generation is a critical component in the development and evaluation of the proposed
SciML methodology for INS drift reduction. As detailed in Chapter 4, the simulation en-
vironment, built using Julia and the High-Performance Inertial Navigation Development
Repository (HIDR), enables the creation of realistic and diverse datasets that encompass a
wide range of trajectories, sensor errors, and operational conditions.

The data generation process involves several key steps, including the generation of trajec-
tory paths, calculation of corresponding velocities and gravitational effects, and simulation of
sensor outputs. Importantly, the systematic augmentation of sensor data with various types
of errors, such as biases, noise, and random walks, is performed to represent a wide range
of inaccuracies encountered in real-world scenarios. This ensures that the SciML models are
trained on datasets that closely resemble real-world conditions, enhancing their ability to
learn robust error correction strategies.

For a comprehensive understanding of the data generation process, its components, and
the underlying principles, readers are encouraged to refer to Chapter 4 and more specifically
look at Fig. 4.1 to see how the system was built. The detailed exploration of the simula-
tion environment, tools, software setup, and modeling techniques provided in that chapter
forms the foundation for the successful application of SciML techniques in enhancing INS

performance.

5.4 INS Mechanization

INS mechanization plays a crucial role in the proposed SciML architecture for INS drift
reduction. It involves the implementation of the core INS calculations using the corrupted
IMU data to estimate the position, velocity, and orientation of the system. The mechaniza-

tion process forms the backbone of the INS and provides the foundation for integrating the
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SciML models. This section builds upon the foundations of INS mechanization laid out in
Chapter 2.

The INS mechanization process is implemented using the HIDR library, which provides
a comprehensive set of tools for INS-related computations. The mechanization code takes

the following inputs:

e Corrupted IMU data: Specific force measurements from accelerometers and rotation

rate measurements from gyroscopes.

e Initial conditions: Initial position (latitude, longitude, and altitude), velocity (in the

North-East-Down frame), and attitude (roll, pitch, and yaw angles).

e Sampling period: The time step between consecutive IMU measurements.

The mechanization process applies the INS mechanization equations to propagate the

navigation states forward in time. It performs several key steps, including:

e Coordinate transformations: Converting the IMU measurements from the body frame

to the navigation frame using rotation matrices such as the direction cosine matrix

(DCM).

e Integration: Integrating the accelerometer and gyroscope data to estimate the vehicle

trajectory, computing the updated position, velocity, and orientation at each time step.

e Accounting for Earth’s rotation and gravity: Incorporating the effects of the Earth’s

rotation and the local gravity vector for accurate INS mechanization.

The output of the INS mechanization, including the estimated position, velocity, and
orientation, serve as critical inputs for the SciML components of the proposed architecture.
These mechanization outputs are compared with ground truth data to compute errors in
navigation states. The errors calculated are then used to train neural network models (mod-

elA for accelerometer data and modelG for gyroscope data) to learn the error characteristics
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and generate appropriate bias corrections. The corrected navigation states obtained from
the neural networks are then fed back into the mechanization process to update the INS
solution, allowing for dynamic correction of errors and minimization of drift over time.

INS mechanization poses several challenges, particularly when dealing with non-linear
dynamics, error accumulation, and proper initialization and alignment of the system. These
challenges were briefly introduced in Chapter 2. To address these challenges, the mecha-
nization code employs advanced numerical methods, such as high-order integration schemes
and adaptive time-stepping, to minimize numerical errors and maintain the stability of the
solution. The integration of SciML techniques, such as neural network-based error correc-
tion, helps dynamically compensate for the accumulated errors and reduce overall drift in
the navigation solution.

The mathematical foundations of the INS mechanization process, including the key equa-
tions for position, velocity, and attitude updates, were covered in detail in Chapter 2. Readers
are encouraged to refer to that chapter for a comprehensive understanding of the underlying
mathematics and concepts.

In summary, INS mechanization is a vital component of the proposed SciML architecture
for INS drift reduction. The mechanization process accurately propagates the navigation
states forward in time, taking into account the corrupted IMU data and the necessary coor-
dinate transformations. The integration of SciML techniques, such as neural network-based
error correction, enhances the accuracy and robustness of the INS, enabling superior navi-

gation performance in the presence of sensor errors and drift.

5.5 Error Modeling and Correction

Building upon the foundations of INS Mechanization within the SciML Architecture, we
now explore the system’s approach to learning and correcting the noise and bias present

in the sensor data. The Error Modeling and Correction component plays a crucial role
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in addressing sensor biases, which are a significant contributor to navigational drift. This
component employs neural network models, namely ModelA for accelerometer data and
ModelG for gyroscope data, to tackle this critical issue.

Figure 5.2 provides an overview of the error modeling and correction pipeline within the

SciML architecture.
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Accelerometer Data Accalerometer Data
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Corrupted INS Corrected IMU
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Gyroscope Data Gyroscope Data
preinG postinG

Figure 5.2: Error Modeling and Correction Pipeline

As illustrated in Figure 5.2, the pipeline begins with the input of corrupted IMU data,
which is fed into the INS Mechanization block. The INS Mechanization process separates
the data into two parallel paths: one for accelerometer data and another for gyroscope data.

Each path includes preprocessing (prelnA and prelnG), neural network models (ModelA
and ModelG), and postprocessing (postInA and postInG) steps. The preprocessing functions
normalize the sensor data, including biases and noise, to ensure consistency across training
samples. ModelA and ModelG are sophisticated neural network architectures that incor-
porate multiple layers with tanh activation functions to effectively capture the non-linear
error characteristics inherent in sensor data. These networks are trained to minimize a loss
function that quantifies the discrepancy between the predicted corrections and the actual
error values, employing optimization techniques such as stochastic gradient descent.

Once trained, ModelA and ModelG provide real-time bias corrections, which are applied

to the preprocessed sensor data. The corrected data from both paths is then combined
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and passed through the postprocessing functions, which convert the neural network outputs
back to their original scale. The resulting corrected IMU data is fed back into the INS
Mechanization block, dynamically enhancing the navigation estimates.

In addition to error correction, Jacobian matrices are computed for each neural network
model. These matrices enable the linear approximation of the impact of neural networks and
facilitate the integration of machine learning-based corrections into the Extended Kalman
Filter (EKF), which will be discussed in the next section.

Figure 5.3 illustrates the error evaluation process, which is an essential component of the

Error Modeling and Correction module.
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Figure 5.3: Error Evaluation Process

As shown in Figure 5.3, the effectiveness of the error correction approach is continuously
evaluated by comparing the INS Mechanization output with ground truth data. This com-
parison allows for ongoing refinement of the neural network models and the processing steps
involved, ensuring the system remains accurate and reliable.

The comprehensive integration of SciML components with traditional INS mechanisms
in the Error Modeling and Correction module significantly advances INS error correction
capabilities, enhancing the robustness and accuracy of the system. The diagrams provided

offer a clear visual representation of the key steps involved in the error modeling and correc-
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tion process, highlighting the interplay between the neural network models, preprocessing
and postprocessing functions, and the integration with the INS Mechanization process.

With the Error Modeling and Correction component in place, the SciML architecture
is well-equipped to mitigate the impact of sensor biases and improve overall navigation
performance. However, to fully realize the potential of the SciML approach, the corrected
sensor data must be effectively integrated into the state estimation process. This is where
the Filtering Framework and State Estimation component comes into play, leveraging the
corrected sensor data and Jacobian matrices to achieve high-accuracy and reliable navigation
solutions.

In the next section, we will explore the Filtering Framework and State Estimation com-
ponent in detail, examining how it integrates traditional filtering methods with SciML en-
hancements to optimize the state estimation process and revolutionize the field of inertial

navigation.

5.6 Filtering Framework and State Estimation

The Filtering Framework and State Estimation component is a crucial element of the SciML
architecture, responsible for achieving high-accuracy and reliable navigation solutions by in-
tegrating traditional filtering methods with SciML enhancements. This component leverages
the strengths of both approaches to optimize the state estimation process and overcome the
limitations of conventional INS techniques.

At the core of the filtering framework lies the Extended Kalman Filter (EKF), a well-
established technique for estimating the states of non-linear systems. The EKF relies on
linear approximations of the system dynamics and measurement models to effectively handle
the complexities of the integrated system and adapt to the non-linear characteristics of sensor
€rrors.

Figure 5.4 presents a simplified architecture diagram of the Filtering Framework and
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State Estimation component, highlighting the integration of the EKF and batch filtering

approaches.

Filtering Framework and State Estimation
Extended Kalman Filter (EKF) Batch Filtering

Sensor Prediction Estimated Corrected NN?uraIk Corrected Navig’:?tion
Data and Update States IMU Data I\Aeog:I; States Solution

Noise Models
and Initial States

Figure 5.4: Simplified architecture of the Filtering Framework and State Estimation compo-
nent in the SciML methodology.

As depicted in Figure 5.4, the filtering process receives noise models and initial states
as inputs, which are meticulously tuned to ensure optimal filter performance and accurate
state estimation. The careful selection and adjustment of these parameters are critical to
the overall effectiveness of the filtering framework.

The EKF operates in an iterative manner, alternating between prediction and update
steps. During the prediction step, the filter employs the system dynamics model to estimate
the current state based on the previous state and control inputs. The update step incor-
porates measurements from external sensors, such as GPS, to correct the predicted state
estimates. By fusing the information from external sensors with the predicted states, the
filter significantly improves the accuracy and reliability of the navigation solution.

One of the key innovations of the SciML architecture is the integration of batch filtering,
which harnesses the capabilities of neural network models to provide corrections to the state
estimates. The batch filtering process involves processing data in batches, enabling the
exploitation of temporal correlations and patterns in the sensor data for more effective error
correction and state estimation.

The neural network models play a vital role in the batch filtering approach. By learning
complex error patterns and adapting to evolving environmental conditions, these models

enhance the accuracy and robustness of the state estimation process. The corrected IMU
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data obtained from the neural networks is fed into the batch filtering component, which
further refines the state estimates.

The integration of the EKF and batch filtering approaches is represented by the bidirec-
tional arrow in Figure 5.4. This integration allows for the seamless exchange of information
between the two components, leveraging the strengths of both traditional filtering techniques
and SciML enhancements.

The performance of the Filtering Framework and State Estimation component is rigor-
ously evaluated using a range of metrics, and the SciML architecture incorporates mecha-
nisms for continuous monitoring and adaptation of the filter parameters. This adaptability
is essential for maintaining high accuracy and reliability in real-world applications, where
environmental conditions and sensor characteristics may vary over time.

In conclusion, the Filtering Framework and State Estimation component of the SciML ar-
chitecture represents a significant advancement over traditional INS methods. By integrating
the EKF with batch filtering and leveraging the power of neural network models, the system
gains the ability to learn and adapt to complex error patterns, resulting in more accurate
and reliable navigation solutions. The simplified architecture diagram (Figure 5.4) provides
a clear visual representation of the key components and their interactions, highlighting the
potential of SciML in revolutionizing the field of inertial navigation. Through the careful
design and integration of the Filtering Framework and State Estimation component, the
SciML architecture paves the way for a new era of high-performance, adaptive, and reliable

navigation systems.
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Chapter 6

Experimental Results and Analysis

6.1 Overview of Experiment

This chapter presents the results of experiments designed to test the effectiveness of the Sci-
entific Machine Learning (SciML) methodology for Inertial Navigation System (INS) drift
reduction, as introduced in Chapter 5. The experiments aimed to address the research ques-
tions outlined in Chapter 1 and evaluate the performance of the proposed SciML architecture
in mitigating INS drift under realistic conditions.

The SciML methodology, as discussed in Chapter 5, integrates neural network models
with traditional INS components to enhance the error correction capabilities of the system.
The architecture incorporates key components such as data generation, INS mechanization,
error modeling, and a filtering framework. By leveraging the power of machine learning,
the SciML approach seeks to capture complex error patterns and relationships from data,
enabling more accurate and robust navigation solutions.

In the experiments, a simulated figure-8 trajectory, as shown in Figure 6.1, was used
to generate realistic motion data. The data generation process, detailed in Section 4.3,
involved the creation of ground truth trajectories and the injection of sensor errors to simulate

real-world scenarios. This approach allowed for a comprehensive evaluation of the SciML
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methodology’s performance under diverse and challenging conditions.
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Figure 6.1: Birds Eye View of Truth Data

The outcomes of these experiments are expected to shed light on the potential of SciML
approaches in revolutionizing the field of inertial navigation. By demonstrating the superior
performance of the SciML-based INS compared to traditional methods, this study contributes
to the growing body of knowledge supporting the integration of machine learning techniques
with classical navigation algorithms. The findings presented in this chapter serve as a foun-
dation for further research and development efforts aimed at advancing the state-of-the-art
in INS drift reduction and enabling more reliable and accurate navigation in a wide range

of applications.

6.1.1 SciML vs. Traditional Baselines

To demonstrate the advantages of the SciML approach, the performance of the SciML-
based INS was compared against traditional INS solutions, such as those employing Kalman

filtering. The comparison was conducted using a simulated figure-8 trajectory, which provides
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a realistic and challenging scenario for evaluating the drift reduction capabilities of the

different approaches.
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Figure 6.2: Comparison between Truth and Free Drifting INS

Figure 6.2 illustrates the problem of drift in traditional INS systems. The blue line
represents the ground truth trajectory, while the orange line shows the trajectory estimated
by a free-drifting INS without any error correction. The significant deviation between the two
trajectories highlights the need for effective drift reduction techniques to maintain navigation
accuracy over time.

To address the drift problem, traditional approaches such as Kalman filtering have been
employed. Figure 6.3 compares the performance of a baseline Kalman filter (orange line)
against the ground truth (blue line). While the baseline filter provides some improvement
over the free-drifting INS, there is still a noticeable discrepancy between the estimated and
true trajectories, indicating the limitations of traditional filtering methods in handling com-
plex error patterns and non-linear motion dynamics.

The introduction of the SciML approach marks a significant advancement in INS drift

reduction. Figure 6.4 showcases the superior performance of the SciML filter (dotted green
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Figure 6.3: Comparison between Truth and Baseline Filter

line) compared to both the baseline filter (orange line) and the ground truth (blue line).
The SciML filter demonstrates a remarkable ability to closely track the true trajectory,

effectively compensating for the complex error patterns and non-linearities present in the

INS measurements.
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Figure 6.4: Comparison between Truth, Baseline Filter, and SciML Filter

The enhanced performance of the SciML filter can be attributed to its ability to learn
and adapt to the specific error characteristics of the INS through the integration of neural
network models. By leveraging the power of machine learning, the SciML approach can
capture intricate error patterns and dynamically adjust the error correction based on the
learned models. This adaptability enables the SciML filter to provide more accurate and
robust drift reduction compared to traditional filtering techniques.

The visual comparison of the trajectories in Figure 6.4 clearly demonstrates the superi-
ority of the SciML approach in minimizing drift and maintaining a high level of navigation
accuracy. The close alignment between the SciML filter output and the ground truth trajec-
tory validates the effectiveness of integrating machine learning techniques with traditional
INS methods.

These diagrams combine the most important information from our Simulation Results. A
breakdown of all the individual comparisons between Northing, Easting, and other important
IMU measurments can be found in the Appendix B.

In the next subsection, we will breakdown the numerical performance of the SciML-based
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INS and see what kind of improvement we ended up achieving.

6.1.2 Numerical Summary of Results

Table 6.1 summarizes the key numerical metrics from the experiments, highlighting the

percentage improvements achieved by the SciML-based system over the baseline.

Metric Baseline | SciML-based INS | Improvement (%)
3D RMSE 516.55 191.21 62.99
Max 3D Error 1914.55 718.74 62.47
Std 3D Error 466.22 171.50 63.21
Median 3D Error 1.02 0.46 54.98
MAE Roll Error (Deg) 0.081 0.034 57.98
MAE Pitch Error (Deg) 0.127 0.040 68.59
MAE Yaw Error (Deg) 1.923 1.447 24.75

Table 6.1: Comparative performance metrics for baseline and SciML-based INS systems.

The significant reductions in error metrics and the percentage improvements highlight
the potential of integrating Scientific Machine Learning techniques with traditional INS
solutions. The SciMIL-based INS achieved a remarkable 62.99% reduction in 3D RMSE
(Root Mean Square Error) compared to the baseline system. This substantial improvement
indicates that the SciML approach effectively minimizes the overall position error, providing
a more accurate navigation solution.

Furthermore, the SciML-based INS demonstrated a 62.47% reduction in the maximum
3D error and a 63.21% reduction in the standard deviation of 3D error. These metrics
underscore the consistency and reliability of the SciML approach in mitigating large errors
and maintaining a stable navigation performance throughout the trajectory.

The median 3D error, which represents the typical error magnitude, was reduced by
54.98% in the SciML-based system. This significant reduction suggests that the SciML
approach effectively handles the majority of error scenarios, providing a robust navigation
solution even in the presence of outliers or extreme error conditions.

In terms of attitude estimation, the SciML-based INS achieved impressive improvements
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in roll, pitch, and yaw errors. The Mean Absolute Error (MAE) for roll and pitch was reduced
by 57.98% and 68.59%, respectively, indicating a substantial enhancement in the accuracy
of attitude determination. The MAE for yaw error showed a more modest improvement of
24.75%, highlighting the challenges associated with estimating heading in inertial navigation
systems.

These numerical results demonstrate the superior performance of the SciML-based INS
across various error metrics, showcasing its ability to effectively reduce drift, improve position
accuracy, and enhance attitude estimation. The consistent and significant improvements
over the baseline system underscore the potential of SciML techniques in addressing the
limitations of traditional INS solutions.

Moreover, the percentage improvements achieved by the SciML-based INS highlight its
adaptability to complex error patterns and dynamic environmental conditions. The sub-
stantial reductions in error metrics suggest that the SciML models can effectively learn and
compensate for the intricate error characteristics of the INS, leading to a more robust and
reliable navigation solution.

The numerical results presented in Table 6.1 provide a comprehensive assessment of the
SciML-based INS performance and serve as a strong foundation for further analysis and
discussion. These results not only validate the effectiveness of the SciML approach but
also motivate continued research and development efforts to further enhance the accuracy,

robustness, and scalability of SciML techniques in inertial navigation applications.

6.2 Analysis and Discussion

The experimental results robustly prove the numerous advantages of the SciML-based INS
over the traditional baseline system in terms of drift reduction and superior navigation per-
formance. SciML consistently outperforms the baseline, and its overall error reduction varied

from 24.75% to 68.59% in comparison with various metrics. The robustness of the theoretical
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assumption represented in the initial hypothesis can be clearly observed in these outcomes,
which also demonstrate the vast opportunities of SciML use in practice. The significant
advantage of learning and fitting scientific machine learning models to complex patterns of
error compensates for the substantial shortcomings of the traditional INS approach, which
largely guarantees its high effectiveness in the environment of challenging conditions.

The SciML models demonstrated exceptional performance in scenarios characterized by
non-linear and unpredictable motion patterns, aligning with the inherent strengths of ma-
chine learning in capturing intricate relationships and adapting to dynamic environments.
The models’ behavior closely matched theoretical predictions, validating the underlying as-
sumptions and design choices of the SciML architecture. This alignment reinforces the
soundness of the SciML methodology and its potential for further enhancements. However,
it is important to acknowledge that some deviations from the expected behavior were ob-
served during the experiments. These deviations provide valuable insights into the models’
capabilities and limitations, highlighting the need for further research and refinement to
address specific challenges and improve robustness in diverse operating conditions.

The experimental results also shed light on the scalability and generalization capabilities
of the SciML models. The models exhibited consistent performance improvements across
different trajectory types and error magnitudes, indicating their ability to adapt to various
scenarios. This adaptability is crucial for real-world applications, where navigation systems
must handle a wide range of operating conditions. However, further investigation is necessary
to assess the performance of the SciML approach in larger-scale and more complex navigation
tasks, such as extended missions or highly dynamic environments. These investigations will
provide a more comprehensive understanding of the models’ capabilities and guide future
development efforts.

The insights gained from the analysis of the SciML models’ behavior and performance
trends have far-reaching implications for future research and development in the field of in-

ertial navigation. The identified strengths and limitations of the SciML approach can inform
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the refinement of the models, the optimization of training procedures, and the exploration
of novel techniques to further enhance drift correction capabilities. Moreover, the successful
application of SciML methods opens up new avenues for innovation and advancement in the
development of next-generation navigation technologies. By leveraging the power of machine
learning, researchers and engineers can push the boundaries of what is possible in terms of
navigation accuracy, reliability, and adaptability.

In conclusion, the analysis and discussion of the experimental results provide strong
evidence for the effectiveness and potential of the SciML approach in reducing INS drift. The
significant performance improvements, the ability to adapt to complex error patterns, and
the alignment with theoretical predictions all contribute to the growing body of knowledge
supporting the integration of SciML techniques with traditional INS solutions. The insights
gained from this study lay the foundation for further research and development efforts aimed
at revolutionizing the field of inertial navigation and unlocking new possibilities for accurate

and reliable navigation in a wide range of applications.
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Chapter 7

Conclusion

7.1 Summary of Research and Key Findings

This thesis addressed the challenges faced by traditional Inertial Navigation Systems (INS),
specifically the accumulation of errors over time and the reliance on external aids for cor-
rection. The introduction chapter highlighted these issues and their impact on the accuracy
and reliability of INS in various applications. To overcome these challenges, this research
proposed the integration of Scientific Machine Learning (SciML) techniques with traditional
INS methods.

The SciML approach presented in this thesis offers a new way of modeling and correcting
INS errors. By using machine learning, particularly neural network models, the proposed
architecture allows INS to learn and adapt to complex error patterns in real-time. This
dynamic error compensation capability distinguishes SciML from conventional INS error
mitigation techniques, which often rely on simplified models and static parameters. The
effectiveness of the SciML approach was thoroughly tested through simulations, as detailed
in the experimental results chapter. The simulation outcomes demonstrate significant im-
provements in drift reduction and overall navigation accuracy achieved by the SciML-based

INS. The comparative analysis against traditional baseline systems revealed substantial re-
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ductions in position, velocity, and attitude errors, with the SciML approach consistently
outperforming its counterparts.

The findings of this research contribute to the broader field of navigation and positioning
systems. By showing the feasibility and benefits of integrating SciML with INS, this research
opens up new possibilities for developing more reliable, adaptable, and resilient navigation
technologies. The successful application of SciML in this context suggests its potential
extension to other domains, such as autonomous vehicles, robotics, and aerospace systems,
where accurate and robust navigation is essential. Furthermore, the research presented in
this thesis aligns with the ongoing efforts in the navigation community to make INS more
self-sufficient and capable of operating in challenging environments. The SciML approach
enables INS to handle complex error dynamics and adapt to changing conditions without
heavily relying on external aids, which is particularly valuable in scenarios where external

references may be unavailable, unreliable, or vulnerable to interference.

7.2 Final Remarks

While this thesis has made progress in addressing the challenges of INS drift and error accu-
mulation, it also opens up new research questions and opportunities for further exploration.
Future research could focus on optimizing the SciML architecture, investigating advanced
neural network structures, training strategies, and data preprocessing techniques to further
improve performance. Additionally, the scalability and generalization capabilities of the
SciML approach could be tested in more diverse and complex navigation scenarios, such as
extended missions, multi-sensor fusion, and highly dynamic environments.

Moreover, the integration of SciML with other emerging technologies, such as deep learn-
ing, reinforcement learning, and transfer learning, presents exciting prospects for the future
of INS. These combinations could lead to the development of even more advanced and in-

telligent navigation systems that can learn from past experiences, adapt to new situations,
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and make optimal decisions in real-time.

In conclusion, this thesis demonstrates the effectiveness of SciML as an approach for
improving INS performance and paves the way for a new generation of navigation systems
that are more intelligent, adaptable, and resilient. The research presented herein lays the
foundation for future advancements in the field, inspiring researchers and practitioners to
explore the potential of integrating machine learning with traditional navigation techniques.
As we continue to push the boundaries of what is possible in navigation and positioning
systems, the insights and contributions of this thesis will serve as a valuable resource and

catalyst for further innovation.

I would like to acknowledge the use of AI language models, specifically for assisting in the proofreading and grammatical improvement of the

final draft of this thesis, in accordance with the EECS Department guidelines effective April 20, 2023.
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Appendix A

List of Figures for Understanding

Inertial Navigation

This appendix includes a comprehensive list of figures in order to understand Inertial Navi-

gation and its Operational Principles.
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Figure A.1: Inertial Measurement Unit
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Figure A.2: Kalman Filtering Process
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Figure A.3: Earth-Centered, Earth-Fixed (ECEF) Frame
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Figure A.4: Sensor Frame
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Figure A.5: Body Frame
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Appendix B

List of Figures for INS Drift Reduction

Analysis

This appendix includes a comprehensive list of figures generated during the analysis of INS
drift reduction using traditional methods and SciML-enhanced approaches. Each figure is
aimed at comparing specific aspects of the navigation system performance under different

analysis conditions.
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Figure B.1: Baseline altitude over time
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Figure B.2: Altitude comparison using the SciML approach.
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Figure B.3: Bird’s eye view of truth data

88



Northing (km)

Birds Eye View - Truth and Free Drifting INS

Truth
Free Drifting INS

0 3 6 9 12
Easting (km)

Figure B.4: Birds Eye view of Truth and Free Drifting INS
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Figure B.5: Bird’s eye view of the baseline trajectory.
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Figure B.6: Bird’s eye view using the SciML model.
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Figure B.7: Easting comparison over time for the baseline scenario.
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Figure B.8: Easting comparison using the SciML approach over time.
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Figure B.9: Northing comparison over time for the baseline scenario.
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Figure B.10: Northing comparison using the SciML approach over time.
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Figure B.11: East velocity error over time in the baseline model.
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Figure B.12: East velocity error over time in the SciML model.
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Figure B.13: North velocity error over time in the baseline model.
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Figure B.14: North velocity error over time in the SciML model.
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Figure B.15: Down velocity error over time in the baseline model.
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Figure B.16: Down velocity error over time in the SciML model.
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Figure B.17: Yaw comparison over time for the baseline scenario.
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Figure B.19: Pitch comparison for the baseline INS model.
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Figure B.20: Pitch comparison using the SciML approach.
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Figure B.21: Roll comparison for the baseline INS model.
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Figure B.22: Roll comparison using the SciML approach.
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