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Abstract

Past studies have shown that different nam-
ing schemes across the globe have evolved
to reach near-maximum optimality in terms
of their trade-offs between accuracy and effi-
ciency. However, it is not clear if this linguistic
optimality is also present in smaller, more lo-
cal environments. This paper aims to answer
this question by investigating the efficiency of
language naming conventions for classes at the
Massachusetts Institute of Technology (MIT).
We analyze factors influencing how classes are
referred to by students and faculty, considering
both formal and informal naming contexts. Our
findings contribute to the understanding of lan-
guage evolution and efficiency in specialized
academic domains.

1 Introduction

At MIT, every class is assigned a unique number
that efficiently compresses information about the
course. This naming system within MIT allows
students to then refer to their classes by name and
number. For example, if you were to say I am tak-
ing "6.009" or "double-oh-nine," most people know
that you are taking a class called "Fundamentals of
Programming".

The unique class naming scheme employed by
MIT prompts questions regarding its efficacy in
information communication. While previous re-
search has explored how various naming systems
around the world tend to evolve to attain an opti-
mal balance between complexity and accuracy, it
remains uncertain whether this linguistic optimality
extends to smaller academic environments. There-
fore, this study aims to assess the efficiency of class
naming conventions at MIT, investigating factors
influencing how classes are referenced in both for-
mal and informal campus discourse. Additionally,
we examine variables such as course level, depart-
ment affiliation, and official name length, which

may impact preferred naming conventions. Further-
more, our analysis reveals instances of linguistic
efficiency through the utilization of abbreviations,
nicknames, and other shorthand references.

In this study, we employ a mixed-methods ap-
proach that combines survey data, computational
analysis, and data visualization techniques. By
surveying a diverse sample of MIT students and
analyzing the collected data using logistic regres-
sion and neural network models, we aim to uncover
the underlying patterns and relationships between
class attributes and naming conventions. Our study
can bridge the gap between theoretical principles
of language evolution and their practical applica-
tions in real-world settings. Through this inter-
disciplinary approach, we contribute to the ongo-
ing discourse on language evolution and efficiency,
while also offering practical insights that can in-
form communication practices within academic
institutions. Specifically, we extend the application
of information-theoretic principles to the domain
of class naming conventions at MIT.

2 Related Work

Language evolution and efficiency have been cen-
tral themes in linguistic research, providing valu-
able insights into how languages adapt to the cog-
nitive and communicative needs of their users. The
principle of least effort, introduced by Zipf (Zipf,
1949) and further developed by Ferrer i Cancho
& Solé (2003) (Ferrer i Cancho and Solé, 2003),
suggests that languages evolve to minimize the
articulatory and cognitive effort required for com-
munication. This principle manifests in various
linguistic phenomena, such as the abbreviation of
common words and the preference for shorter, more
frequent terms.

In recent years, the concept of communication
efficiency has gained prominence in the study of
language evolution, particularly in the context of



color naming systems. Zaslavsky et al. (Zaslavsky
et al., 2018) demonstrated that color-naming sys-
tems across languages achieve near-optimal com-
pression by optimizing the information bottleneck
(IB) trade-off between the complexity and accuracy
of the lexicon. They found that small changes in a
single trade-off parameter account for much of the
observed cross-language variation in color naming.
Additionally, they showed that efficient IB color-
naming systems exhibit soft category boundaries
and often leave large regions of color space incon-
sistently named, phenomena that are also found
empirically.

Building upon this work, Zaslavsky et al. (Za-
slavsky et al., 2022) further explored the evolution
of color naming systems, providing evidence that
the evolution of color terms reflects a pressure for
efficiency. By analyzing color naming data from
the recent past, they demonstrated that the IB prin-
ciple can account for the historical trajectory of
color term evolution, capturing both discrete and
continuous aspects of this process.

The emergence and cultural evolution of linguis-
tic structures have also been investigated through
experimental studies. Kirby et al. (Kirby et al.,
2008) conducted laboratory experiments to observe
how language evolves through repeated interac-
tions among individuals, providing insights into
the mechanisms that drive the formation and adap-
tation of linguistic conventions. These findings
underscore the importance of social learning and
cultural transmission in shaping language evolu-
tion.

While these studies have significantly advanced
our understanding of language evolution and effi-
ciency, there remain gaps in their application to
specialized domains. Technical fields and aca-
demic settings, such as MIT, present unique lin-
guistic environments where efficiency pressures
may manifest differently than in general language
use. Ellis (Ellis, 2008) explores the dynamics of
second language acquisition, emphasizing the role
of frequency, salience, and contingency in shaping
language learning and usage patterns. This work
highlights the potential for distinct evolutionary dy-
namics in specialized contexts, where the demands
of the domain may influence the formation and
adoption of linguistic conventions.

Drawing inspiration from Zaslavsky et al.’s work
on efficient compression in color naming systems,
we aim to extend the application of information-
theoretic principles to the domain of class naming

conventions at MIT. By adapting their methodol-
ogy and insights to our specific context, we seek to
uncover similar patterns of efficient compression
and its role in shaping the evolution of naming con-
ventions within this specialized academic domain.
Our study builds upon the theoretical foundations
laid by previous research while leveraging novel
data sources and analytical methods to provide a
more comprehensive understanding of how effi-
ciency pressures shape linguistic conventions in
this unique setting.

3 Data and Methods

In this section, we introduce the data collection
process, as well as the analysis of the data col-
lected. Then, we walk through how these data
were processed and analyzed by different methods,
including logistic regression and neural network
models.

3.1 Data Collection

To investigate the efficiency of language naming
conventions for classes at MIT, we conducted a sur-
vey of current MIT students to gather information
about their class naming practices.

3.1.1 Survey Design and Participants

We designed an online survey to elicit responses
from MIT students regarding how they verbally
refer to their classes. The survey included the fol-
lowing questions:

* Year (e.g., Freshman, Sophomore, Junior, Se-
nior, Graduate)

* Official name of classes enrolled in during
Fall 2023 and Spring 2024 semesters

* Preferred way of referring to each class (name
or number)

The survey was distributed to MIT students via
dorm-spam (an email list that includes most of the
entire undergraduate population) which helped tar-
get a diverse range of participants across different
departments and years of study.

3.1.2 Survey Results

A total of 116 MIT students participated in the
survey, providing data on 350 classes. Figure 1
shows the distribution of participants by year: 36
Freshmen, 22 Sophomores, 28 Juniors, 23 Seniors,
and 7 Graduate students. As seen in Figure 2, the
most represented departments in the survey were



Course 6 (Electrical Engineering and Computer
Science), Course 18 (Mathematics), and Course
21M (Music and Theater Arts). The survey results

Number of Students by Year

Freshman Sophomore Junior senior Grad
Year

Figure 1: Distribution of participants by year.

Top 15 Distribution of Class Majors
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Figure 2: Most represented departments in the survey.

revealed that 53.71% of classes were referred to by
name, while 46.29% were referred to by number.
Among classes referred to by name, 38.83% used
the full official name, and 61.17% used a shortened
or nickname version. For classes referred to by
number, 15.43% used the old course number, and
84.57% used the new or current number.

The survey results provide valuable insights into
the overall distribution of class naming conventions
among MIT students.

3.1.3 Class Name Efficiency Classifications

To further analyze the efficiency of these naming
conventions, we defined two major classifications
for how students refer to their classes. The first
classification, Name, refers to instances where a
class is referred to by its official name or a short-
ened/nickname version. Within this classification,
we further distinguish between using the complete
official name (e.g., "Graduate Machine Learning"
for 6.790, "Managerial Finance" for 15.401) and

using an abbreviated or colloquial version of the
name (e.g., "NLP" for 6.861%, "I am taking Bio" for
7.012). The second classification, Number, refers
to instances where a class is referred to by its course
number. This classification is further divided into
using the previous course number (e.g., "6.004",
"double-oh-nine") and using the updated course
number (e.g., "6.1200", "8.02", "six one twenty").
These classifications serve as the foundation for
our analysis of the factors influencing class naming
conventions and the efficiency of these conventions
in different contexts.

Name Number

‘ Full Name ShortenediNickname: ‘ ‘ Qid Number New/Current Number ‘

Figure 3: Overview of class naming efficiency classifi-
cations used in the study.

3.2 Data Preprocessing and Feature
Extraction

Survey responses were preprocessed to ensure data
quality and consistency. We removed any incom-
plete or invalid responses and standardized the for-
matting of class names and numbers.

For each class mentioned in the survey, we ex-
tracted the following features:

e Enrolled number: The number of students
enrolled in the class

* Length of name: The character length of the
official class name

* Hours: The weekly time commitment for the
class

» Rating: The overall rating of the class

* Department: Binary features indicating the
department or subject area (e.g., dept_10,
dept_11, dept_12, etc.)

* Level: Binary features indicating whether the
class is undergraduate (level_U) or graduate
(level_G)

These features were selected based on their po-
tential to influence how students refer to their
classes and provide insights into the efficiency of
class naming conventions. The enrolled number,



length of name, hours, and rating features capture
various aspects of the classes that may affect nam-
ing preferences. The binary department features
(dept_10, dept_11, etc.) allow us to analyze the
impact of different subject areas on naming con-
ventions, while the binary level features (level_U
and level_G) help us investigate the differences
between undergraduate and graduate classes.

By focusing on these specific features, we aim
to capture the most relevant information for our
analysis while ensuring a manageable scope for the
study. These features serve as the foundation for
our investigation into the factors influencing class
naming conventions and the efficiency of these con-
ventions in different contexts.

3.3 Analytical Methods

To analyze the patterns and trends in class naming
practices among MIT students and investigate the
factors influencing these conventions, we employed
two main analytical methods: logistic regression
and neural networks.

3.3.1 Logistic Regression

Logistic regression is a statistical method used for
binary classification tasks, making it well-suited
for our study, where we aim to predict whether a
class is referred to by its name or number based on
various features. We trained a logistic regression
model using the scikit-learn library in Python, with
the following key parameters:

* L2 regularization to prevent overfitting
* Tolerance for stopping criteria set to 0.0001
* Inverse of regularization strength (C) set to 1

The logistic regression model allows us to ex-
amine the coefficients associated with each feature,
providing insights into the relative importance and
direction of influence of different factors on the
class naming conventions.

3.3.2 Neural Networks

To further explore the relationships between class
features and naming conventions, we implemented
a basic neural network model using the PyTorch
library. The architecture of our neural network
consists of the following components:

* Three fully connected linear layers with (input
activation size, output activation size) of (37,
128), (128, 256), and (256, 128)

* ReL.U activation function applied after each
linear layer

* A final output layer with a single output neu-
ron and sigmoid activation function

The model was trained using binary cross-
entropy loss and stochastic gradient descent (SGD)
optimizer with a learning rate of 0.01. We trained
the model for 10 epochs, using a batch size of 16
and shuffling the training data at each epoch.

The neural network approach allows us to cap-
ture potential non-linear relationships between the
input features and the target variable (class nam-
ing convention). By comparing the performance
of the neural network model with the logistic re-
gression model, we can assess the complexity of
the underlying patterns in the data and determine
which approach is more suitable for this task.

In the following sections, we will present the
results obtained from both the logistic regression
and neural network models, evaluating their per-
formance using various metrics such as accuracy,
precision, recall, and F1-score. We will also dis-
cuss the insights gained from analyzing the feature
coefficients in the logistic regression model and the
implications of these findings for understanding the
efficiency of class naming conventions at MIT.

4 Results

In this section, we discuss the results of the binary
classification task on MIT’s class naming schemes
with two main methods described—Ilogistic regres-
sion and basic neural network models.

4.1 Result: Logistic Regression

As part of the data analysis, we computed accuracy,
precision, recall, and F-1 score generated from our
logistic regression model. The summary table of
the results is shown in Figure 4.

Model Performance

F-1 Score
TP/ (TP +
1/2*(FP+FN))

74.67%

Recall
(Sensitivity)
TP / (TP+FN)

84.85%

P
Pr

TP | (TP+FP)

A y

72.86% 66.67%

Figure 4: Model performance summary table for the
logistic regression model.

Overall, our logistic regression model achieves
72.86% accuracy. Furthermore, relatively high
recall (84.85%) compared to precision (66.67%)
shows that our model is more likely to make false-
positive predictions over false-negative predictions.



Since the labeling scheme of our data is such that
0 is the class being referred to as numbers and 1
is the class being referred to as names, this result
shows that our model is more likely to classify the
class being referred to as names than the true popu-
lation. This phenomenon can also be observed in
the confusion matrix in Figure 5.

Actual (Numbers)

Actual (Names)

Predicted (Numbers) Predicted (Names)

Figure 5: Confusion matrix for the logistic regression
model.

4.2 Result: Neural Network

As the second method to analyze our data, we used
a basic matching learning model mainly composed
of linear and activation layers. For the hyperparam-
eters, the learning rate of 0.005 and epoch size of
10 were used. Validation accuracy and validation
loss over the 10 epochs are visualized in Figure 6
and Figure 7, respectively.

Validation Accuracy

| — Vvalidation Accuracy

Epochs

Figure 6: Validation accuracy for the neural network
model.

At the end of 10 epochs of training, our neural
network model achieved an accuracy of 68.57%.
This accuracy, when compared with 72.86% by our
logistic regression model, shows that the neural
network model may not be the ideal way to analyze
our data in this study.

Validation Loss

—— Validation Loss

Epochs

Figure 7: Validation loss for the neural network model.

4.3 Result: Test Set Distribution

It is important to put the 72.86% performance of
our logistic regression model in context. Specifi-
cally, we want to see if our model outperformed
a blind guesser. Here, a blind guesser refers to a
prediction system where it predicts the label that
is represented most frequently in the dataset. For
example, in the testing dataset where 75% of the
data are labeled 0 and 25% of the data are labeled
1, a blind guesser could achieve 75% accuracy by
simply labeling every datapoint with label 0. To
see how our model performed against this hypo-
thetical blind guesser, we look into the test set label
distribution, as well as our model’s prediction set
label distribution. Both of these distributions are
shown in Figure 8 and Figure 9.

Test Set Label Distribution

Number

Figure 8: Validation accuracy for the neural network
model.

There are two main conclusions we can draw
from these two graphs. First, our model demon-
strates significant superiority over a hypothetical
blind guesser that would have achieved 52.9% ac-
curacy, which is equivalent to the majority label’s
proportion in the test dataset. Second, although
more classes are referred to as numbers than their
names in the testing dataset, the opposite is true in



Pred Set Label Distribution

Number

Figure 9: Validation loss for the neural network model.

the predictions made by our model. This indicates
that our model’s predictions are driven by learned
features from the training process, rather than sim-
ply mirroring dataset distribution predictions.

5 Discussion

In this section, we dive deeper into the results
produced by our model. Due to its superior per-
formance, we focus our analysis and discussion
on the results produced by the logistic regression
model. Specifically, we present a feature analysis
that shines the light to lingual efficiency present in
MIT’s classing naming scheme, as well as limita-
tions and future work associated with our study.

5.1 Feature Significance Extraction

With the logistic regression model, we can observe
how each feature influences the decisions made by
the model by investigating the coefficients associ-
ated with each feature (Figure 10).

Since we label the classes that are referred to
as numbers with Os and the classes that are re-
ferred to as names with 1s, we can attribute the
features with positive coefficients as the factors
that indicate name-referred classes and the ones
with negative coefficients as the factors that indi-
cate number-referred classes. In the subsections
below, we analyze each of these classes and show
how they may indicate the presence of language
efficiency within MIT’s class naming system.

5.1.1 Features for ''Name-Referred' Classes

In Figure 11, we can see the features with the 10
most positive coefficients, which is equivalent to
the features that contribute the most to the classes
being referred to by their names.

Two primary factors contribute to classes being
referred to by their names: affiliation with the hu-

Variable Coefficients

dept_21G
dept 21M
dept_21W
dept_21A

level_G

length_of_name
dept_CMs
enrolled_number

Variable

|
n
|
o
!
°
]

0.0 0.5 10 15 2.0
Coefficient

Figure 10: Validation loss for the neural network model.
On the y-axis are 37 features associated with each class,
and on the x-axis are the coefficients associated with
each feature.

manities, arts, and social sciences (HASS) depart-
ment, and classification as graduate-level courses.
As seen in Figure 11, the prominent departments
influencing this trend include 21G (Global Lan-
guages), 21M (Music and Theater Arts), 21W
(Comparative Media Studies), and 21A (Anthro-
pology) at MIT. Since these classes are often not
mandatory for graduation, not all students may
know their numeric representations. Additionally,
the longer prefixes of these department codes (e.g.,
21G vs. 5) result in longer class identifiers, increas-
ing complexity in their numbered forms compared
to classes from other departments. Graduate-level
courses, like those in the HASS department, are
typically optional and may be less familiar to stu-
dents. Therefore, referring to them by their names
rather than numbers may help mitigate information
loss during communication.

5.1.2 Features for '"'Number-Referred"
Classes

In Figure 12, we can see the features with the 10
most negative coefficients, which is equivalent to
the features that contribute the most to the classes
being referred to by their numbers.

Two primary factors contribute to classes be-
ing referred to by their numbers: affiliation with
popular scientific departments and classification
as undergraduate-level courses. Notably, depart-
ments such as 9 (Brain and Cognitive Science), 14
(Economics), 18 (Mathematics), and 8 (Physics)
have a significant influence on this trend, as they



Variables that Contribute to Names

dept_21G
dept_21M
dept_21W
dept_21A

level_G

Variable

dept_11
dept_STS
dept_21L
dept_22

dept_15

0.00 0.25 050 0.75 1.00 125 150 175 2.00
Coefficient

Figure 11: 10 variables that contribute the most to
classes being referred to by their names.

Variables that Contribute to Numbers

dept_9
dept_14 -
dept_18
dept_8

dept_10 1

Variable

dept_2 -
dept_CC -
level_U -

dept_20 A

dept_3 A

-16 -14 -12 -10 -08 -0.6 -04 -0.2 0.0
Coefficient

Figure 12: 10 variables that contribute the most to
classes being referred to by their numbers.

attract a large number of students. Furthermore,
two of these departments feature multiple General
Institute Requirement (GIR) classes, mandatory for
graduation, making numeric communication more
efficient for students. Additionally, undergraduate-
level classes tend to have higher enrollment rates
and student interest, making numeric representa-
tion sufficient for effective communication with
minimal information loss.

5.2 Numerical Features Contribution

The features discussed in the previous section were
mainly binary (Undergrad/Grad, Department X or
not Department X, etc.). In this section, we an-
alyze numerical features. Specifically, we look

at 4 features—class rating, length of the official
class name, enrollment, and weekly hours commit-
ment—and highlight the key observations made
from their associated coefficients as shown in Fig-
ure 13.

Numerical Variable Coefficients

enrolled_number -

o -

—0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.10
Coefficient

rating -

length_of_name -

Variable

Figure 13: Coefficients associated with 4 numerical
features.

Two key observations emerge from this trend,
one anticipated and the other unexpected. Firstly,
classes with higher enrollment are more likely to
be referred to by their numbers. This expected phe-
nomenon arises from the widespread knowledge
among students about these classes and their nu-
meric representations, facilitating efficient commu-
nication. Conversely, the unexpected trend reveals
that longer official class names increase the likeli-
hood of being referred to by their names rather than
numbers. Contrary to our hypothesis, longer class
names do not lead students to prefer numeric com-
munication. This unexpected behavior suggests
that students may opt for shortened or nickname-
based references to achieve compression goals,
rather than relying on numeric representations.

In addition to these two key observations, it is
notable that numerical features exert considerably
less influence on the model’s decisions compared to
binary features. As depicted in Figure 13, the coef-
ficients associated with numerical features typically
range between 0 and 0.12. This is in stark contrast
to the coefficients for binary features, which range
between 0 and 2.1, as illustrated in Figures 11 and
12.

5.3 Model Performance Analysis

As indicated in the Result section, our logistic re-
gression model outperformed our neural network



model. There are two primary reasons for the poten-
tial underperformance of our neural network model
compared to our logistic regression model. Firstly,
prior research suggests that neural network models
often require extensive data to surpass traditional
data analytic tools (L’heureux et al., 2017). How-
ever, our survey was constrained to data from MIT
students, encompassing information from only 350
classes, which may not meet the substantial data re-
quirements necessary for the neural network model
to realize its full performance potential. Addition-
ally, suboptimal architectural design or hyperpa-
rameters may have contributed to the neural net-
work model’s underperformance. Despite employ-
ing grid search to identify optimal hyperparameters
within our search space, there exist unexplored
layer designs and hyperparameters that could po-
tentially outperform our model.

5.4 Limitations and Future Work

While our study offers valuable insights into the
effectiveness of class naming practices at MIT,
several limitations warrant further investigation.
Firstly, while our project suggests the potential lin-
guistic optimality of MIT’s class naming scheme,
formal validation is lacking. Exploring how MIT’s
class naming maximizes optimization metrics such
as Information Bottleneck (IB) as in Zaslavsky et
al. (Zaslavsky et al., 2018) could strengthen our
findings. Additionally, a deeper dive into feature
analysis could yield crucial insights. This entails
extracting additional class features (e.g., recitation
frequency, website URLS, class age) and exploring
correlations between them to enhance model perfor-
mance. Augmenting data collection efforts through
expanded surveys or alternative sources, coupled
with employing diverse modeling techniques, may
uncover more profound observations.

6 Conclusion

In this study, we investigated the efficiency of lan-
guage naming conventions for classes at the Mas-
sachusetts Institute of Technology (MIT). By em-
ploying a mixed-methods approach that combined
survey data, computational analysis, and data vi-
sualization techniques, we uncovered underlying
patterns and relationships between class attributes
and naming conventions. Our findings contribute
to the broader understanding of language evolution
and efficiency in specialized academic domains. By
extending the application of information-theoretic

principles to the domain of class naming conven-
tions at MIT, we have shown that the drive for
efficient communication plays a significant role in
shaping naming practices within this unique aca-
demic setting. The insights gained from this study
have potential applications in optimizing commu-
nication strategies, designing effective course cata-
loging systems, and fostering a shared understand-
ing among students and faculty.

While our study has limitations, such as the need
for formal validation of linguistic optimality and
the potential for more extensive data collection and
feature analysis, it provides a solid foundation for
future research in this area. As we continue to ex-
plore the factors that shape language evolution and
efficiency, we can develop more effective strategies
for communication, knowledge sharing, and collab-
oration within academic institutions and beyond.
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