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Abstract

This paper evaluates the potential of large language models (LLMs),
specifically GPT-3, in cybersecurity scenarios, focusing on their role in
assisting a defensive agent’s decision-making in a simulated environ-
ment. We examine the application of LLMs in tasks including anomaly
detection, vulnerability identification, and attack forecasting. The
study introduces an experimental setup that employs a graph-based
cybersecurity network, where GPT-3 influences the decisions of a de-
fensive agent. Initial findings highlight GPT-3’s proficiency in charting
the optimal path within the simulated setting. Beyond contributing
to the comprehensive understanding of LLMs’ capabilities in intricate
problem-solving tasks, this study offers valuable insights for the en-
hancement of cybersecurity methodologies and tools.

1 Introduction

In the realm of artificial intelligence, large language models (LLMs) like
GPT-3 have made a significant impression, demonstrating their capabilities
across various tasks, including but not limited to natural language under-
standing, generation, and even programming-related challenges. With their
massive scales and ability to generate coherent and contextually relevant
text, these models have opened the door to numerous possibilities. However,
one relatively unexplored question is the full potential of these models in ex-
tracting actionable knowledge without prior explicit training in specialized
areas. This paper aims to delve into this issue, focusing particularly on the
application of GPT-3 in the field of cybersecurity.

Cybersecurity, an area of research that has grown more critical over the years,
forms the backdrop of our investigation. The ubiquity of digital technology,
the proliferation of connected devices, and the increasing complexity of cyber
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threats necessitate the development of innovative and effective methods to
safeguard networks and systems. It is within this context that we propose
the exploration of LLMs, such as GPT-3, as a potential new approach to
meeting these cybersecurity challenges.

Previous research on LLMs, including seminal works by Haluptzok et al.
(2022)[1], Austin et al. (2021)[2], and Wei et al. (2022)[3], provides a solid
foundation for our study. These studies have shed light on multiple facets of
LLMs, from the enhancement of performance through self-supervised learn-
ing to generating programs that meet user-specified conditions, and devel-
oping a chain of thought to enhance LLM performance. Building on these
valuable insights, we aim to extend our understanding of LLMs’ potential in
the realm of cybersecurity.

In our study, we propose a comprehensive approach to explore the appli-
cation of LLMs in various cybersecurity tasks. These tasks encompass de-
tecting anomalies in network traffic, identifying potential vulnerabilities, and
predicting future attacks. Our research methodology involves modeling a cy-
bersecurity network as a graph, with nodes representing devices and edges
signifying connections between them. This model forms the basis of our ex-
perimental design, where GPT-3 guides the decisions of a defensive agent.

Preliminary results from our experiments have been encouraging, suggesting
that GPT-3 can effectively identify the next path in our simulated environ-
ment. This finding, albeit preliminary, implies that LLMs could potentially
be a significant aid to defensive agents, enabling them to make informed
decisions and proactively address cybersecurity threats.

Our research carries significance for several reasons. First, it delves into
the unexplored potential of LLMs, specifically GPT-3, in cybersecurity, an
area of increasing importance. Second, by examining how LLMs can guide
defensive agents, our work contributes to a broader understanding of LLMs’
capabilities in complex problem-solving tasks. Lastly, our findings could po-
tentially inform the development of new cybersecurity tools and techniques,
thereby having a practical impact on the field.

In the broader landscape of AI research, our study adds to the ongoing
discussion on the ethical implications and potential risks of using LLMs.
By examining GPT-3 in a cybersecurity setting, we can illuminate poten-
tial vulnerabilities that malicious actors might exploit, thereby informing
the development of guidelines and best practices for the responsible use of
LLMs in sensitive domains such as cybersecurity. This unique perspective
can potentially contribute towards making the digital world a safer place by
identifying and mitigating risks before they can be exploited by malicious
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entities.

As part of our research methodology, we will delve into the realm of prompt
engineering, a key factor that significantly influences the performance of
LLMs like GPT-3. Prompt engineering, the practice of crafting precise and
effective prompts to guide the model’s responses, plays a pivotal role in ex-
tracting the desired output from LLMs. By experimenting with different
prompt structures and incorporating domain-specific knowledge, we seek to
further understand how to most effectively communicate with GPT-3 and
by extension, other large language models. The insights from this part of
our study may provide valuable guidelines for interacting with LLMs across
various domains, not just cybersecurity.

Beyond the direct applications of our research, we also aim to evaluate the
performance of GPT-3 in different network configurations and attack scenar-
ios. This comparative analysis will provide deeper insights into the strengths
and weaknesses of GPT-3 in various cybersecurity contexts. It will help us
determine the conditions under which LLMs are most effective in assisting
defensive agents and extract actionable knowledge, thereby contributing to
the generalizability of our findings.

In conclusion, our research seeks to explore the untapped potential of large
language models, specifically GPT-3, in the realm of cybersecurity. By ex-
amining how GPT-3 can guide the decisions of a defensive agent in a simu-
lated environment, we hope to shed light on the capabilities and limitations
of LLMs in complex problem-solving tasks. Our findings could potentially
impact the development and improvement of cybersecurity tools and tech-
niques, and inform the ethical and responsible use of LLMs. Ultimately, our
study aims to contribute to the broader understanding of LLMs and their
potential impact on various aspects of society, including cybersecurity.

2 Methods

The research design for this study encompasses a strategic approach to eval-
uate the utility of GPT-3 in cybersecurity tasks. Specific methodologies
include a well-defined experimental design, meticulous execution of the ex-
periment, and a robust data analysis plan. The intricacies of these method-
ologies, discussed in the ensuing subsections, ensure a systematic extraction
of actionable knowledge from GPT-3, thereby contributing to the cyberse-
curity domain.
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2.1 Experimental Design

Our experimental architecture seeks to create a representation of a network
environment using a graph model, where each node signifies a unique device
and the edges denote the connections between them. Every node is at-
tributed with distinct characteristics that an agent can manipulate through
diverse actions.

Figure 1: Perspective diagram of the overarching experimental design, en-
capsulating potential avenues for future work

Figure 1 represents the overarching design of our experiment, where we aspire
to harness the predictive capabilities of GPT-3 to steer the decision-making
process of an agent. The principal objective of our experiments is to probe
the extent to which GPT-3 can guide these decisions. While Figure 1 out-
lines the comprehensive intent of our experiment, future research could delve
deeper into assessing how effectively GPT-3 can guide an agent’s decisions
in scenarios that more closely mirror real-world conditions.
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Figure 2: Diagram of the current design of the experiment

Figure 2 sheds light on the current framework of our experiment. Here,
an agent, which could be operating with different goals and constraints, is
required to traverse the graph and implement the appropriate actions to
achieve its objective.

This experimental design establishes a solid basis for our research, enabling
us to delve into the exploration of GPT-3’s potential within the sphere of
network environments. The outcomes of our study hold the potential to
contribute significantly to the development of future strategies and broaden
our understanding of large language models.

2.2 Procedure

Our experiment adheres to the following procedure:

1. Select the graph type and establish the amount of information to share
with GPT-3.

2. Initiate the first simulation to identify the initial node and action for
the threat agent.

3. Incorporate some information from the preceding node and action into
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a general prompt to derive the subsequent node and action for the
threat agent.

4. Repeat steps 2 and 3 until the threat agent achieves its objective or
the simulation concludes.

While Figure 1 in the experimental design section presents an extended vision
of our experimental ambitions, it is important to note that it represents
potential future work and will not be directly addressed in this paper. In our
current research, we are focused on enhancing the complexity of the agent’s
role. Our aim is to enable GPT-3 to learn how to optimally navigate the
network and make the most effective decisions under various circumstances.

2.3 Experimental Benchmarking

To validate the strength of our approach, we are preparing to conduct com-
prehensive benchmarking experiments. These tests will involve running the
complete simulation 20 times. This rigorous testing regime will enable us to
assess the effectiveness of our prompts and the quality of responses elicited
from GPT-3.

Each benchmarking run will challenge GPT-3 with different graph structures
and varying degrees of information. Through these diverse scenarios, we aim
to understand what GPT-3 can assimilate without explicit pre-training or
chain-of-thought prompting.

2.4 Data Analysis

In our current work, we are extensively scrutinizing the data obtained from
our benchmarking experiments. Our data analysis process is systematically
designed to elucidate the performance of GPT-3 in guiding the decisions of
a defensive agent in a simulated cybersecurity environment.

We focus on evaluating how the large language model responds to various
network configurations and attack scenarios. Our process involves a careful
examination of the model’s responses in relation to the selected graph type
and the information shared with it.

We measure GPT-3’s performance based on its ability to correctly identify
the optimal node and action for the defensive agent. We also study how the
model’s performance varies with changes in the graph type and the degree
of information it is provided with.

Through a robust statistical analysis of the gathered data, we aim to draw
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meaningful insights about the capabilities and potential limitations of GPT-
3 in this context. The findings from our data analysis will help us understand
the potential of large language models like GPT-3 in cybersecurity and in-
form future research in this area.

3 Results

In this section, we present the results of our study, which aims to evaluate
the effectiveness of GPT-3 in guiding the decisions of a defensive agent in
a simulated cybersecurity environment. Our results are organized into the
following subsections:

3.1 Experimental Setup and Methodology

3.2 Benchmark Comparisons

3.3 Performance Metrics and Analysis

3.4 Limitations and Implications

3.1 Experimental Setup and Methodology

We modeled a cybersecurity network as a graph, with nodes representing
devices and edges representing connections between devices. Our experi-
mental design involved GPT-3 guiding the decisions of an agent attempting
to traverse through this network. To thoroughly evaluate the performance
of GPT-3 in this context, we conducted simulations across various network
configurations and attack scenarios. Each simulation was run 20 times to
ensure the validity of our results.

We also considered the impact of different network topologies and attack
scenarios on the performance of GPT-3. By analyzing the model’s perfor-
mance in different settings, we aimed to understand how the model adapts
to various contexts and identify potential areas of improvement.

During the simulations, we experimented with strategies for prompt engi-
neering to optimize the information extraction from GPT-3. We assessed
the impact of different prompt structures and domain-specific knowledge on
the model’s overall performance. By understanding how to communicate
effectively with GPT-3, we aimed to better utilize the LLM’s capabilities in
the cybersecurity domain.

One of the final prompt structures that we used throughout the simulations
was the following:
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You are solving a graph problem where you need to find a path in the graph.
The graph has an an unknown number of nodes, lettered A to Z.
The graph has an unknown number of bidirectional edges. Here they are:
An edge from A to B
An edge from B to C
An edge from B to D
You can only move from {seen_nodes} for now
You can never move to a node you have already seen
What is the next Node you go to according to the optimal path?
The desired output is to reach node D.
If you can reach node D now, do so.
If the next node is D, print out "(final) next_node: D"
Explain why this is the optimal path.
After the explanation print out the next node, in the following format:
"next_node: <node>"
"next_action: <action>"
"seen_nodes: <list of nodes>"

The prompt above represents a full view of one of the graphs we gave GPT-
3. The main goal of our prompt design was to ensure that GPT-3 could
easily understand the problem while still allowing for flexibility and adapt-
ability to various scenarios. We iteratively refined our prompts based on the
performance and feedback from GPT-3, ultimately arriving at the prompt
presented above.

Our methodology for constructing the prompt for the system focused on
making it as adaptable as possible while ensuring the system can compre-
hend the entire graph. We began by describing the graph, informing GPT-3
about the number of nodes and edges, and specifying the connections be-
tween edges. Next, we concentrated on the second part of the prompt, com-
municating the graph’s objective and the intended outcome. In our prompt’s
third and final section, we explained how the desired output should be for-
matted. The third and final step was crucial for the system in order for
the system to be able to be automatable. The three step approach enabled
us to preserve consistency in our experimental setup while granting GPT-3
sufficient flexibility to produce relevant responses.

In addition to the prompt you see above, we also incorporated several vari-
ations to evaluate GPT-3’s ability to adapt to different levels of information
availability. These variations, which included providing full, partial, or no
information about the graph helped us understand the model’s performance
across a wide range of scenarios.
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3.2 Further Discussion on Benchmark Comparisons

To conduct a comprehensive analysis of GPT-3’s performance, we delved
deeper into the two information input scenarios (Full and Partial) and ex-
amined the model’s performance using six different graphs with varying com-
plexity levels. Here, we provide further insights into each scenario and the
implications of our findings.

3.2.1 Full Information Scenario

In the Full information scenario, GPT-3 was given complete details about
the graph, such as the number of nodes, edges, and their connections. This
scenario helped us determine the model’s performance when supplied with
all the necessary information. We expected GPT-3 to perform well under
these circumstances, as it had access to all the data needed to solve the graph
problem.

You are solving a graph problem where you need to find a path in the graph.
The graph has an 4 nodes, lettered from A to D.
The graph has 7 bidirectional edges. Here they are:

3.2.2 Partial Information Scenario

In the Partial information scenario, GPT-3 was provided with only a por-
tion of the graph data, such as a limited number of nodes and connections
between them. By evaluating the model’s performance in this scenario, we
aimed to understand how well GPT-3 could adapt to situations where some
information might be missing or unavailable. This is crucial, as real-world
cybersecurity scenarios may not always provide complete details.

3.2.3 Implications of Benchmark Comparisons

Our findings from these benchmark comparisons have several implications.
First, they demonstrate GPT-3’s potential to perform well in graph-based cy-
bersecurity problems with sufficient information. However, the input data’s
availability and quality can significantly impact the model’s performance.
This underscores the need for robust data collection and preprocessing strate-
gies when deploying GPT-3 in real-world cybersecurity applications.

Additionally, the comparisons with other state-of-the-art techniques revealed
opportunities for improvement or integration with complementary methods
to enhance GPT-3’s performance in the cybersecurity domain. This could
involve combining GPT-3’s natural language processing capabilities with
graph-based algorithms or other specialized cybersecurity techniques to cre-
ate a more robust and effective solution.
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Overall, our benchmark comparisons provide valuable insights into the strengths,
weaknesses, and potential applications of GPT-3 in the cybersecurity do-
main, paving the way for further research and development in this area.

3.3 Performance Metrics and Analysis

We evaluated the performance of GPT-3 in the cybersecurity domain by
measuring how accurate the model was in finding the optimal path in the
graph. If the GPT-3 Model was able to find the optimal path in the graph,
then we would consider that a success, and if it was not able to find the op-
timal path, then we would consider that a failure. By measuring the success
rate of the GPT-3 model, we were able to see how well the model was able
to find the optimal path in the graph.

To get an accurate model of how well the GPT-3 model could find the op-
timal path in the graph, we ran each simulation 20 times. This was done
to ensure that we were getting an accurate representation of the model’s
performance. We got a more accurate representation of the model’s perfor-
mance by taking the percentage of how many times the model could find the
optimal path in the graph.

For reference, we ran the data on six different graph types, where graph
1 was the most straightforward and graph six was the most complex. Every
time there was a search performed on the graph, the GPT model traversed
another node in the graph.

The first four graphs can reach the goal node in two steps, so a 3rd search is
unnecessary. The last two graphs require a 3rd search to reach the goal node.

The results of our analysis can be seen below.
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Figure 3: Partial Information Scenario: Performance of GPT-3 in iden-
tifying the optimal path across three graph types of increasing complexity,
evaluated over 20 simulations. Note the diminishing success rate with in-
creased graph complexity.

Figure 4: Full Information Scenario: Assessment of GPT-3’s ability to
identify the optimal path across six increasingly complex graph types, based
on 20 simulations per graph. Observe the relative improvement in success
rate compared to the partial information scenario.

From the graphs above, we can see that the GPT-3 model was able to
find the optimal path more often in the Full Information Scenario than in
the Partial Information Scenario.

3.4 Limitations and Implications

When interpreting the results of our study, it’s important to consider its
limitations. One of these is that our experimental setup utilized a simu-
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lated cybersecurity environment, which may not fully capture the intricacies
of real-world scenarios. This may affect the applicability of our findings in
practical situations.

Our study focused on assessing how well GPT-3 performs in graph-based
problems within the realm of cybersecurity. While our research offers valu-
able insights into the model’s abilities in this context, additional investigation
is required to evaluate its performance across a wider range of cybersecurity
tasks, such as identifying malicious URLs, detecting phishing emails, and
recognizing malicious network traffic.

One noteworthy observation is that the model’s accuracy declines rapidly as
the graph’s complexity increases. This implies that GPT-3 may encounter
obstacles when dealing with more intricate scenarios, emphasizing the need
for further research and development to address this limitation.

Despite these limitations, our study has significant implications for the use of
GPT-3 in cybersecurity. Firstly, our results demonstrate the model’s poten-
tial as an effective decision-support tool for agents in a graph environment,
making it a valuable addition to practitioners’ cybersecurity toolkits.

Additionally, our research emphasizes the importance of developing robust
data collection and preprocessing strategies when deploying GPT-3 in real-
world applications. Ensuring that the model has access to accurate and
comprehensive data is essential for optimizing its performance and unlock-
ing its full potential in the cybersecurity domain.

Finally, our study highlights the potential advantages of combining GPT-
3’s natural language processing capabilities with specialized cybersecurity
techniques or algorithms. This could result in more resilient and practical
solutions that take advantage of the strengths of both GPT-3 and industry-
specific methods.

Overall, our study offers a thorough evaluation of GPT-3’s performance in
a simulated cybersecurity environment, providing valuable insights into the
model’s strengths, weaknesses, and potential applications. As GPT-3 contin-
ues to improve, further research and development in this area will be critical
for utilizing its capabilities and achieving its potential in the cybersecurity
domain.
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4 Conclusion

In this innovative exploration of GPT-3’s capabilities within the realm of
cybersecurity, we have shed light on both the potential and constraints of
this advanced language model. Our findings illustrate that GPT-3, when
equipped with carefully engineered prompts, can successfully navigate an
agent through graph-based problems. This is a promising indicator of GPT-
3’s applicability as a decision-support tool in cybersecurity operations.

Yet, the robustness of GPT-3’s performance is intrinsically tied to the qual-
ity and completeness of the input data. In our study, scenarios with ample
information resulted in commendable performance by the model. However,
as the quantity of information reduced, we observed a proportional decline
in its success rate. This crucial observation underscores the necessity for
comprehensive data collection and meticulous preprocessing when preparing
to deploy GPT-3 in real-world settings.

Delving deeper, our study unveiled a critical facet of GPT-3’s performance—
it tends to waver when tasked with more complex graph problems. This
underlines a potential obstacle in harnessing GPT-3 for more intricate cy-
bersecurity challenges, thus stressing the importance of continued research
and improvements to address this limitation.

Despite these challenges, our research has painted a promising picture of
GPT-3’s potential to revolutionize cybersecurity. By combining its formidable
natural language processing abilities with specialized cybersecurity tech-
niques, we can potentially devise more robust, effective solutions. This
could involve a strategic integration of GPT-3 with graph-based algorithms
or other advanced techniques, thereby enabling the model to better navigate
complex cybersecurity landscapes.

In summary, our investigation provides a comprehensive examination of
GPT-3’s possible role in cybersecurity, its strengths, and its areas for im-
provement. As the frontier of language models in cybersecurity continues
to expand, further research and development are imperative to fully exploit
their potential. Our study serves as a stepping stone in this journey, laying
the foundation for future explorations and driving the evolution of GPT-3
and similar models in cybersecurity.
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