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Abstract

We investigate if transformers perform mathe-
matical computations by representing meaning-
ful intermediate values. Focusing on linear re-
gression, we probe models for encodings of the
slope. Our experiments show that larger mod-
els robustly encode this intermediate in usable
forms. We find a strong correlation between
intermediate encoding and task learning. Us-
ing reverse probing and representational inter-
ventions, we provide causal evidence of these
representations in computations. Our work ad-
vances the interpretability of transformer mod-
els and promotes more transparent machine
learning systems.

1 Introduction

Transformer language models have demonstrated
remarkable performance across a wide range of
tasks, from natural language understanding to
mathematical reasoning. However, the underlying
mechanisms by which transformers operate remain
largely opaque, limiting our ability to interpret their
behavior and build trust in their outputs. In particu-
lar, there is a lack of clarity around how transform-
ers perform apparently sophisticated computations,
such as solving mathematical equations.

In this work, we aim to shed light on the inner
workings of transformers by investigating the role
of intermediates—internal quantities computed by
the model that are instrumental to the final output
but not directly observable. Formally, we hypoth-
esize that if a method g is being used by a trans-
former for calculation, its associated intermediate
I is encoded in the transformer. We iterate and
improve on this hypothesis in the setting of linear
regression to provide a framework on intermediates
useful to other researchers.

We structure our work by asking fundamental
questions about intermediates, namely

e What is an intermediate?
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¢ How can intermediates be encoded and how
can we robustly probe for them?

e When, or under what circumstances, are in-
termediates encoded?

All of these questions develop an understanding
of intermediates that builds up to the Key Ques-
tion: How can we use intermediates to demon-
strate that a transformer is using a method in
its computations? By systematically addressing
these questions, we develop a framework for iden-
tifying and interpreting the intermediates in trans-
former computations. We show that larger mod-
els are more likely to represent intermediates in
human-interpretable forms, and that a model’s abil-
ity to “learn” a task is closely tied to its encoding
of the relevant intermediates. Crucially, we pro-
vide causal evidence that models are using encoded
intermediates in their computations by demonstrat-
ing that interventions on latent representations can
predictably modify model outputs.

With an answer to this general question, we can
use our understanding of intermediates in the linear
regression case to eventually better understand how
transformers model more complex phenomena.

2 Related Work

2.1 Transformers

Transformer models which use attention mecha-
nisms (Vaswani et al., 2017) have been shown to
achieve State-of-the-Art performance in a variety
of fields. By assigning different weights to different
parts of the input, the attention mechanism allows
the model to weigh the relevance of each piece
of information, thereby enhancing its ability to
capture intricate patterns and dependencies within
the data. Notably, recent breakthroughs in large
language models (LLMs), exemplified by GPT-3
(Brown et al., 2020) rely on transformer architec-
tures. Beyond their conventional application in nat-



ural language processing (NLP), transformers have
demonstrated efficacy across diverse technical do-
mains, including physics and mathematics. For in-
stance, transformer models have exhibited success
in particle physics simulations (Pastor-Serrano and
Perko, 2022). This widespread success prompts
our study’s inquiry: "How do transformers acquire
and encode complex technical concepts?"

2.2 Mechanistic Interpretability

Mechanistic interpretability (MI) is a burgeoning
field that aims to understand "how" models do vari-
ous tasks. For example, (Nanda et al., 2023) found
that transformers implement modular addition us-
ing the discrete Fourier transformer by reverse en-
gineering the weights of the model. But models
can often be more complex than initially meets the
eye - (Zhong et al., 2023) found that (Nanda et al.,
2023)’s description of the modular addition task
was incomplete, and the model employs a "Pizza"
algorithm in addition to the original "Clock" algo-
rithm. We take a more coarse-grained approach to
investigate how transformers model linear regres-
sion, but remain cautious in drawing conclusions
from incomplete evidence.

2.3 Interpretability Probes

(Alain and Bengio, 2018) introduce linear probes
as a means to understanding the dynamics of in-
termediate layers, by predicting the target labels
from these layers. If the predictor is accurate, then
one can argue that the representation captures the
corresponding concept. We use linear probes to
argue that hidden state representations capture ver-
sions of the slope term in linear regression. While
(Laina et al., 2022) introduces reverse linear probes
to map label vectors to representation vectors to
show the semanticity of data representations. In
our work, we use this technique in our simple lin-
ear regression problem to quantify the proportion
of the embedding representation explained by the
various polynomial forms of the slope term.

2.4 Linear Regression

Other works have demonstrated the merits of using
linear regression as a task problem. (Garg et al.,
2023) show the in-context ability of transformers to
in-context learn linear functions. While (Akyiirek
et al., 2023) use linear regressions as a problem
for showing transformer-based in-context learners
implement SGD implicitly. And (Vacareanu et al.,
2024) demonstrate how pre-trained large language

models can do linear and non-linear regression. We
use linear regression as a problem to probe and
analyze intermediates.

3 Experimental Setup

In this section, we introduce different possible ways
the transformer models can encode the intermedi-
ates. Then, we show the setup of our study that
helps us investigate which form of intermediate en-
coding is being used in the examined transformer
models.

3.1 What is an intermediate?

We define an intermediate as a quantity that a
transformer uses to complete a computation but
is not directly inputted/outputted to/by the trans-
former. More formally, if the input to the trans-
former is X and its output Y, we can model the
transformer’s computation as Y = g(X, I'), where
g is the method used and [ is the intermediate of
that method. For example, if we believe the trans-
former is computing the linear regression task using
Y =wX, then g(X,]) = g(X,w) = wX.

3.2 Probing for intermediates

We want to understand what form of the intermedi-
ate, f(I), is encoded in the network’s hidden states,
HSs. For example, while it may be obvious to
humans to compute y = wz, perhaps transformers
prefer exp(log(w) + log(x)) or Vw?z2. We want
to develop a robust probing methodology that cap-
tures these diverse possibilities. We identify three
ways an intermediate I can be represented: linearly,
nonlinearly, and not at all.

Linearly encoded We say [ is linearly en-
coded if there is a linear network that takes I =
Linear(HS) for a particular hidden state in the
network. We determine the strength of a linear en-
coding by evaluating how much of the variance in
I can be determined by the HS, e.g. the R? of the
probe.

Nonlinearly encoded To probe for an arbitrary
f(I), we define a novel Taylor probe, which finds
coefficients a; such that f(I) = ail + aol? +
. +apI" and f(I) = Linear(HS). To actually
implement this probing style, we use Canonical
Correlation Analysis probes (cca, 2007), which
given some multivariate data X and Y, find direc-
tions within X and Y that are maximally corre-
lated. Here, X = [I,1?,13,...,I"],and Y = HS.
If I is of bounded magnitude and n is sufficiently



large, we are able to probe the transformer for any
function f(I). We evaluate the strength of this
nonlinear encoding using R2.

Not encoded If I fails to be linearly or non-
linearly encoded, we say that it is not encoded
within the network. Note that this does not im-
ply that the information required to represent [/
is not at all stored in the network, just that f(I)
is not a linear function of the model’s hidden
states at a single depth position (e.g. it’s possible
f(I)=MLP(HS)). But since transformers are a
sequence of linear functions interspersed with non-
linearities (Elhage et al., 2022), it’s unlikely that
the transformer is using f(I) in its calculations if
it’s not a linear feature of hidden states, making
this outcome less interesting to us.

3.3 Training

Setup In our linear regression setup, we gener-
ate X and w between [—0.75,0.75], where X has
size (5000,65) and w with size (5000,). We
generate Y using Y = wX, and train a small
transformer with L, H = 1,16 to predict y,+1
given [T1,Y1,...s Tn, Yn, Tnt1]. We want to ap-
ply our probing techniques to better understand
what types of models generate intermediates. Un-
der the described setting of linear regression, we
train transformers of size L = [1,2,3,4,5] and
H = [2,4,8,16,32]. We train for 20,000 epochs
using Adam (Kingma and Ba, 2017) and with a
mean squared error (MSE) loss.

4 Results

4.1 Larger models have stronger encodings of
intermediates

We find that smaller models often don’t have w
encoded, while larger models encode w linearly,
as evidenced by Fig. 1. We formalize this further
by defining max(R?) as the maximum average R
value across context lengths, identifying the depth
at which an intermediate representation is optimally
encoded. In Fig. 2, we observe a clear phase tran-
sition in encoding across model size and also find
that max(R?2) does not significantly improve if we
extend the degree of the Taylor probes to n > 2.
Thus, in the case of linear regression, we find that
models represent w linearly, quadratically, or not
at all.

It’s somewhat intuitive that larger models have
w directly encoded - they have the capacity to be
inefficient with their storage of information, com-

pared to smaller networks that likely have to be
more efficient with compression and storage of in-
formation. However, we do see that some small
models achieve an encoding of w, like the quadratic
encoding for the L. = 2, H = 8 model in Fig. 2.
We attribute this to the "lottery ticket hypothesis" -
larger models have more "lottery tickets" in their
increased capacity to find a "winning" representa-
tion of w (Frankle and Carbin, 2018). Interestingly,
the intuitive understanding that larger models have
w better encoded leads us to the counterintuitive
conclusion that larger models are actually more
interpretable for our purposes.

4.2 Encoding quality is tied to model
performance

We find that the improvements in model prediction
as a function of context length, often deemed in-
context learning, are correlated to improvements
in the encoding of w. In Fig. 3, we see that for
better-performing models, the trajectories of the
encoding of w and model MSE are increasingly
similar. If our models were indeed using the identi-
fied representations of w in their computations, this
would make sense - our models need to calculate
Yn+1 = WTp41, DUt x4 is always known with
perfect precision because of skip connections in the
model. Thus, in theory, all the model needs to do
to calculate y is understood w well, which explains
the findings of Fig. 3.

4.3 Transformers causally use intermediates
in its computations

So far we’ve discovered that models encode w, €i-
ther linearly or nonlinearly, and found relationships
between model size, performance, and encoding
strength. But how can we ensure that the model
is using w in its computations? For an intermedi-
ate to be meaningful, it must be interpretable and
used by the model for computations. Transformers
have been shown to encode intermediates that are
not used in their computations (Ravichander et al.,
2021), and we want to ensure w is not just encoded
in some small, insignificant part of the residual
stream and is instead used by the model.

Reverse Probing We set up probes going from
[w,w?] => HS, as opposed to HS => f(w),
and show the degree that hidden states can be ex-
plained by w in Fig. 4. Often, we find that w
can explain a large amount of variance in a single
self-attention, implying that these self-attentions
are being dedicated to representing w. We take this



R2 of Probe Evolution for L = 1, H = 16 Linear Regression Model R? of Probe Evolution for L = 1, H = 16 Linear Regression Model
Taylor Probe from HS => w Taylor Probe from HS => [w, w2, w3, w*, w3]
003529 27 24 23 22 18 18 17 20 13 13 18 14 12 14 13 16 12 14 15 12 13 16 13 08 08 13 14 15 09 14 [l RIS 01 36 30 28 25 24 23 19 20 19 20 16 16 19 17 14 16 14 18 14 16 16 14 14 17 14 14 14 15 15 16 13 15
0037 18 14 14 17 15 15 16 16 15 15 15 13 14 13 14 14 14 15 12 12 14 14 15 13 15 13 15 14 14 13 14 [EEERNISTE 01 38 20 15 15 18 16 16 16 16 16 17 16 14 15 15 15 15 16 16 13 13 15 16 17 14 16 14 16 15 16 15 15
00 01 01 0 3 04 04 04 05 05 05 06 06 05 06 07 06 06 06 06 06 07 06 06 06 07 08 07 07 06 06 [LLEIEBEE 01 01 01 03 05 04 05 06 07 06 08 09 09 10 10 09 09 09 09 09 09 09 09 10 08 09 10 11 11 11 10 09 09
00 02 00 02 01 O 0 6 05 06 07 06 06 06 06 06 07 06 06 07 06 06 TSR 01 02 00 02 03 05 05 06 08 06 08 09 09 10 10 09 09 09 09 09 09 10 09 10 08 09 10 11 11 11 10 09 09
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 YR 00 00 00 00 00 00 00 00 00 01 00 00 00 00 00 00 01 00 00 00 01 00 01 01 01 00 01 00 01 01 00 01 00
R? of Probe Evolution for L = 3, H = 8 Linear Regression Model R? of Probe Evolution for L = 3, H = 8 Linear Regression Model
Taylor Probe from HS => w Taylor Probe from HS => [w, w2, w3, w*, w®]

mip-res-3 mip-res-3
mip-3 ¢ mip-3
attn-res-3 attn-res-3
attn-3
mip-res-2
mip-2
attn-res-2
attn-2
mip-res-1 5 0016 11 08 09 06 10 10 11 13 18 10 10 11 10 10 10 09 10 11 10 11 09 11 11 11 10 11 11 1313 11 13
ARSI 00 13 08 05 04 03 03 02 02 02 02 01 01 01 01 01 01 01 01 01 01 01 00 01 01 01 00 00 00 00 00 00 00 S 00 13 08 06 07 06 10 10 13 12 17 10 10 10 10 07 09 07 08 08 08 09 07 07 08 08 07 08 08 10 09 09 11
ELOECES R 00 12 09 06 05 05 05 04 03 03 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 BEEEEREE 00 13 18 23 35 29 38 37 38 39 46 38 38 38 38 37 39 40 43 40 39 37 36 35 38 41 38 40 39 42 40 39 38
EEUSTEE 00 12 09 06 05 05 05 04 03 03 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 NSNS 00 13 18 23 35 29 38 37 38 39 46 39 39 38 38 41 41 42 45 42 44 42 42 42 45 48 44 48 47 52 49 47 47

< 9215 [9poW ‘Ayjend Buipoou3

[[)T-Re 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 [UsSe 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00 00 00 00
0 5 10 15 20 25 30 ] 5 10 15 20 25 30
Context Length Encoding Quality, Taylor Probe Degree ) Context Length

Figure 1: We plot the R? of Taylor probes for the intermediate w within models trained on the task Y = wX. We
see that larger models have w encoded, often linearly, with little gain as we move to higher degree Taylor probes,
while small models do not have w encoded. The encoding of w generally improves then plateaus. This provides
initial correlational evidence that some models use w in their calculations.
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Figure 2: We calculate the mean of the Rzi of probes for f(w) across all layers of the transformer and annotate each
model with its highest mean score, max(R?). When f(w) is linear (left) and quadratic (right), we observe a striking
phase transition of encoding based on model size, demarked by the red dashed line. If w is encoded, it is mostly
encoded linearly, with the (L, H) = (5, 2), (4, 32), (2, 8) models showing signs of a quadratic representation of
w. We do not see any meaningful gain in encoding when extending the Taylor probe to degree n > 2. For models
where f(w) is well represented, it often happens in an attention layer. This is possibly because the attention layer
aggregates all past estimates of f(w) into an updated estimate.
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Figure 3: We test the correlation between model performance and the encoding of w on 5 of our 25 models of

evenly spaced performance quality. In red, we plot normalized values for 1 — R? of the probe for HS => [w,w

’]

at the best position (specified in Fig. 2), and in blue, the mean squared error (M S E ) for these models. We find
that the ability of the best-performing models to in context learn is highly correlated with their encoding of w
(R?*(MSE,w) trends to 1). If the model was truly using w, this would make sense, as its ability to predict the data
should be strongly dependent on its "understanding” of w. This is stronger correlational evidence that some models

use w in their calculations.

as evidence that w is being used by the model -
otherwise, it’s unclear why such a valuable part of
the model would be dedicated to storing w.

Intervening We can generate even stronger ev-
idence by using the reverse probes to intervene
on the model and predictably change its output
from w => w’. For example, in Fig. 5 we at-
tempt to make w’ = 0.5 for all series, and then
measure the observed w from the models’ outputs
(e.g. w; = y;/x;). For the best-performing mod-
els, the intervention worked, providing direct proof
that the model uses its internal representation of
w in computations. For models where we identi-
fied a quadratic representation of w, we see that
w = 0.5, —0.5 are both represented in the observed
intervention.

Putting it all together While it is intuitive that
a transformer would simply calculate w and use it
to compute Y = wX, we can generalize our under-
standing of intermediates from linear regression to
create a framework to show that a transformer uses
a method g with associated, unique intermediate 1
in its calculations:

1. If a model uses a method g, its hidden states
should encode I (shown in Fig. 1).

2. If a model uses a method g, model perfor-
mance should improve if [ is better repre-
sented (shown in Fig. 3).

3. If and only if the model uses g, we expect
some hidden state’s variance to be almost fully
explained by I (shown in Fig. 4). If g wasn’t
used, it doesn’t make sense for a high degree

of a hidden state’s variance to be explained by
1.

4. If and only if the model uses g, we can in-
tervene on hidden states to change I => I’
and predictably change the model output from
9(X,I) => g(X,I') (shown in Fig. 5)

These are increasingly powerful methods of
proof, with the first two being correlational and the
last two being causal. Note that the ideal method of
proof is finding the execution of g by cracking open
the weights of a transformer and analyzing its com-
putations directly. However, this is extremely time
intensive, and using the described coarse-grained
approach allows researchers to test many hypothe-
ses for g quickly and effectively.

Thus, we have a general method to show that
a model is using intermediate I associated with
method g.

5 Future Work

While we have strong correlational and causal evi-
dence that the transformer is using w in its compu-
tations to model linear regression, we believe that
the true power of our work is using our framework
of intermediates to understand how transformers
model more complex tasks. For example, we can
investigate how transformers model systems gov-
erned by linear ordinary differential equations. Hu-
mans have both analytical and numerical methods
to model linear ordinary differential equations, and
we could define unique intermediates for various
methods to determine which method(s) the trans-
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probe from [w, w?] => H S across all models, and find that the intermediate can explain significant amounts of
variance in model hidden states.
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Figure 5: Right: We intervene using reverse probes to make all models output w’ = 0.5. This intervention can either
fail (16/25), be partially successful nonlinearly (2/25) or linearly (3/25), or be successful (4/25). From Fig. 2, we see
that the L = 5, H = 2 model has a quadratic representation of w, which explains why we see a quadratic pattern in
its intervention (w = —0.5, 0.5 are both represented). We would expect interventions on hidden states where more
variance can be explained to be more successful, but both the (L, H) = (4,2), (4, 8) models have equal variance
explained by intermediates but are considerably different in intervention success (right two panels). Intervening is
the strongest causal proof that our model is using w in its computations.

formers are using. Due to time constraints, we
leave this to future work.

6 Conclusion

In this work, we have developed a framework for
understanding how transformer models perform
mathematical computations by identifying and in-
terpreting meaningful intermediate quantities. Fo-
cusing on the task of linear regression, we have
shown that transformers robustly encode the key

intermediate - the slope of the regression line - in
their hidden states, often in linearly or quadratically
accessible forms.

We found that a model’s ability to learn the task
is strongly tied to the quality of its intermediate
representations, suggesting that transformers’ suc-
cess hinges on learning and manipulating inter-
pretable computations. Using the techniques of
reverse probing and representational interventions,
we provided causal evidence that these encoded



intermediates are used directly in the model’s cal-
culations.

Our findings demonstrate that an "intermediate-
centric" approach to interpretability can yield valu-
able insights into the inner workings of black-box
transformer models. By identifying the right in-
termediates and probing for their representations,
we can develop a clearer understanding of how
transformers perform complex computations.

Looking forward, our framework can be ex-
tended to investigate a wide range of tasks beyond
linear regression. By defining unique intermedi-
ates for different computational methods, we can
uncover the specific algorithms and techniques em-
ployed by transformers in domains such as differ-
ential equations, optimization, and symbolic math-
ematics.

Ultimately, we believe that the systematic study
of interpretable intermediates is a promising path
toward developing more transparent, explainable,
and trustworthy machine learning systems. As
transformers continue to push the boundaries of
artificial intelligence, a deeper understanding of
their computational mechanisms will be crucial for
ensuring their safe and responsible deployment in
real-world applications.
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