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Background & Motivation Experimental Setup

How do transformers compute mathematical quantities? We MOdEl Problem .
study this question through “intermediates” o
Y =wX

Y =wX e Sample 5000 values of w € [-0.75, 0.75]
ﬁ o Sample 65 (x, y) points for given w

w is an intermediate (/) because it ® Train transformer withL=1{1, 2, 3,4, 5}and H={2, 4, 8, 16, 32}

is not directly inputted/outputted
by the model Interpretability Techniques:

. : 2 12 P,
but what if the model was using exp(log(w) + log(z)) or Vw22 Linear Probe Nonlinear Probe (Taylor Probe)

____________________________1 | . . : : ‘ :
Key Questions: I Lmear%;’_H‘f&EZis Ws.t o f() = al + axl? + ..+ an ™

e How can we find if a quantity is_represented in a transformer?
e How can we prove that a model is using method g with an

>0
D)
<
®
q
n
®
v
q
o
U
®
=)
e~
®
q
<
®
=
S
oQ

intermediate /{e.g., g = WX, [ = W) . Determine proportion of hidden ] Change model output :
e How can we apply this to non-trivial problems? | state represented by / o from using w => w’ |
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Results & Discussion

l1l. Iff the model uses g, we expect some hidden state’s variance to be

l. If a model uses a method g, its hidden state should encode / .
almost fully explained by /

R? of Probe Evolution for L = 1, H = 16 Linear Regression Model R? of Probe Evolution for L = 1, H = 16 Linear Regression Model
Taylor Probe from HS => w Taylor Probe from HS => [w, w2, w3, w*, w?] 2 . .
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Reverse Probe from [w, w?] = > HS
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R< of Probe Evolution for L = 3, H = 8 Linear Regression Model R? of Probe Evolution for L = 3, H = 8 Linear Regression Model =3
Taylor Probe from HS => w Taylor Probe from HS => [w, w2, w3, w?, w°] Q
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Embedding Size Embedding Size IV. Iff the model uses g, we can intervene on hidden states to change /

=> |’ and predictably change the model output from g(X, 1) => g(X, I’)

Il. If a model uses a method g, model performance should improve | | | |
. . Intervention on Linear Regression Models with [w, w?]= > HS
if [ is better represented L=1,H=16 L=5H=2 L=4,H=2 L=4,H=8
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